Description Usage Arguments Details Value Author(s) References See Also Examples
Model-implied variance-covariance matrix (\boldsymbol{Σ} ≤ft( \boldsymbol{θ} \right)) using the Reticular Action Model notation.
1 |
A |
Asymmetric paths, such as regression coefficients and factor loadings. |
S |
Symmetric matrix representing variances and covariances. |
F |
Filter matrix used to select the observed variables. |
I |
Identity matrix. |
\boldsymbol{Σ} ≤ft( \boldsymbol{θ} \right) = \mathbf{F} ≤ft( \mathbf{I} - \mathbf{A} \right)^{-1} \mathbf{S} ≤ft[ ≤ft( \mathbf{I} - \mathbf{A} \right)^{-1} \right]^{T} \mathbf{F}^{T}
Returns the model-implied variance-covariance matrix (\boldsymbol{Σ} ≤ft( \boldsymbol{θ} \right)) derived from the \mathbf{A}, \mathbf{S}, \mathbf{F}, and \mathbf{I} matrices.
Ivan Jacob Agaloos Pesigan
McArdle, J. J. (2013). The development of the RAM rules for latent variable structural equation modeling. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary Psychometrics: A festschrift for Roderick P. McDonald (pp. 225–273). Lawrence Erlbaum Associates.
McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37(2), 234–251.
Other SEM notation functions:
eqs_mu()
,
eqs()
,
lisrel_fa()
,
lisrel_obs_xy()
,
lisrel_obs_yx()
,
lisrel_obs_yy()
,
lisrel_obs()
,
lisrel_xx()
,
lisrel_xy()
,
lisrel_yx()
,
lisrel_yy()
,
lisrel()
,
ram_mu()
,
ram_m()
,
ram_s()
,
sem_fa()
,
sem_lat()
,
sem_obs()
1 2 3 4 5 6 7 8 9 10 11 12 13 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.