Description Usage Arguments Details Value Author(s) References See Also Examples
Mean Structure (\mathbf{M} vector) using the Reticular Action Model notation.
1 |
A |
Asymmetric paths, such as regression coefficients and factor loadings. |
F |
Filter matrix used to select the observed variables. |
I |
Identity matrix. |
mu |
Vector of expected values (\boldsymbol{μ}). |
\mathbf{M} = \mathbf{F} ≤ft( \mathbf{I} - \mathbf{A} \right)^{-1} \boldsymbol{μ}
Returns the mean structure (\mathbf{M} vector) derived from the \mathbf{A}, \mathbf{F}, \mathbf{I}, matrices and \boldsymbol{μ} vector.
Ivan Jacob Agaloos Pesigan
McArdle, J. J. (2013). The development of the RAM rules for latent variable structural equation modeling. In A. Maydeu-Olivares & J. J. McArdle (Eds.), Contemporary Psychometrics: A festschrift for Roderick P. McDonald (pp. 225–273). Lawrence Erlbaum Associates.
McArdle, J. J., & McDonald, R. P. (1984). Some algebraic properties of the Reticular Action Model for moment structures. British Journal of Mathematical and Statistical Psychology, 37(2), 234–251.
Other SEM notation functions:
eqs_mu(),
eqs(),
lisrel_fa(),
lisrel_obs_xy(),
lisrel_obs_yx(),
lisrel_obs_yy(),
lisrel_obs(),
lisrel_xx(),
lisrel_xy(),
lisrel_yx(),
lisrel_yy(),
lisrel(),
ram_mu(),
ram_s(),
ram(),
sem_fa(),
sem_lat(),
sem_obs()
1 2 3 4 5 6 7 8 9 10 11 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.