R/GAPIT.EMMAxP3D.R

Defines functions `GAPIT.EMMAxP3D`

#'
#'
#'
#'
#'
#'
#'
`GAPIT.EMMAxP3D` <-function(
  ys,
  xs,
  K=NULL,
  Z=NULL,
  X0=NULL,
  CVI=NULL,
  CV.Extragenetic=0,
  GI=NULL,
  GP=NULL,
	file.path=NULL,
  file.from=NULL,
  file.to=NULL,
  file.total=1, 
  genoFormat="Hapmap", 
  file.fragment=NULL,
  byFile=FALSE,
  fullGD=TRUE,
  SNP.fraction=1,
  file.G=NULL,
  file.Ext.G=NULL,
  GTindex=NULL,
  file.GD=NULL, 
  file.GM=NULL, 
  file.Ext.GD=NULL,
  file.Ext.GM=NULL,
  SNP.P3D=TRUE,
  Timmer,
  Memory,
  optOnly=TRUE,
  SNP.effect="Add",
  SNP.impute="Middle", 
  SNP.permutation=FALSE,
  ngrids=100,
  llim=-10,
  ulim=10,
  esp=1e-10,
  name.of.trait=NULL, 
  Create.indicator = FALSE, 
  Major.allele.zero = FALSE){
#Object: To esimate variance component by using EMMA algorithm and perform GWAS with P3D/EMMAx
#Output: ps, REMLs, stats, dfs, vgs, ves, BLUP,  BLUP_Plus_Mean, PEV
#Authors: Feng Tian, Alex Lipka and Zhiwu Zhang
# Last update: April 6, 2016
# Library used: EMMA (Kang et al, Genetics, Vol. 178, 1709-1723, March 2008)
# Note: This function was modified from the function of emma.REML.t from the library
##############################################################################################
#print("EMMAxP3D started...")
  Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="P3D Start")
  Memory=GAPIT.Memory(Memory=Memory,Infor="P3D Start")


  #When numeric genotypes are selected, impute the missing SNPs with the allele indicated by the "SNP.impute" value
  if(!optOnly)
  {
    if(SNP.impute == "Major") xs[which(is.na(xs))] = 2
    if(SNP.impute == "Minor") xs[which(is.na(xs))] = 0
    if(SNP.impute == "Middle") xs[which(is.na(xs))] = 1
  }


#--------------------------------------------------------------------------------------------------------------------<
  #Change data to matrix format if they are not
  if(is.null(dim(ys)) || ncol(ys) == 1)  ys <- matrix(ys, 1, length(ys))
  if(is.null(X0)) X0 <- matrix(1, ncol(ys), 1)

  #handler of special Z and K
  if(!is.null(Z)){ if(ncol(Z) == nrow(Z)) Z = NULL }
  if(!is.null(K)) {if(length(K)<= 1) K = NULL}

  #Extract dimension information
  g <- nrow(ys) #number of traits
  n <- ncol(ys) #number of observation

  q0 <- ncol(X0)#number of fixed effects
  q1 <- q0 + 1  #Nuber of fixed effect including SNP

  nr=n
  if(!is.null(K)) tv=ncol(K)

  #decomposation without fixed effect
  #print("Caling emma.eigen.L...")
  if(!is.null(K)) eig.L <- emma.eigen.L(Z, K) #this function handle both NULL Z and non-NULL Z matrix

  if(!is.null(K)) eig.L$values[eig.L$values<0]=0
  Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="eig.L")
  Memory=GAPIT.Memory(Memory=Memory,Infor="eig.L")

  #decomposation with fixed effect (SNP not included)
  #print("Calling emma.eigen.R.w.Z...")
  X <-  X0 #covariate variables such as population structure
  if(!is.null(Z) & !is.null(K)) eig.R <- try(emma.eigen.R.w.Z(Z, K, X),silent=TRUE) #This will be used to get REstricted ML (REML)
  if(is.null(Z)  & !is.null(K)) eig.R <- try(emma.eigen.R.wo.Z(   K, X),silent=TRUE) #This will be used to get REstricted ML (REML)

  Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="eig.R")
  Memory=GAPIT.Memory(Memory=Memory,Infor="eig.R")

  if(!is.null(K))
  {
    if(inherits(eig.R, "try-error"))
       return(list(ps = NULL, REMLs = NA, stats = NULL,
                   effect.est = NULL, dfs = NULL, maf = NULL,
                   nobs = NULL, Timmer = Timmer, Memory=Memory,
                   vgs = NA, ves = NA, BLUP = NULL, BLUP_Plus_Mean = NULL,
                   PEV = NULL, BLUE=NULL
                   )
              )
#print("@@@@@")
  }
#-------------------------------------------------------------------------------------------------------------------->
#print("Looping through traits...")
#Loop on Traits

  for (j in 1:g)
  {
    if(optOnly)
    {
  #REMLE <- GAPIT.emma.REMLE(ys[j,], X, K, Z, ngrids, llim, ulim, esp, eig.R)
  #vgs <- REMLE$vg
  #ves <- REMLE$ve
  #REMLs <- REMLE$REML
  #REMLE_delta=REMLE$delta
      if(!is.null(K))
      {
        REMLE <- GAPIT.emma.REMLE(ys[j,], X, K, Z, ngrids, llim, ulim, esp, eig.R)

        Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="REML")
        Memory=GAPIT.Memory(Memory=Memory,Infor="REML")

        rm(eig.R)
        gc()
        Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="eig.R removed")
        Memory=GAPIT.Memory(Memory=Memory,Infor="eig.R removed")
        vgs <- REMLE$vg
        ves <- REMLE$ve
        REMLs <- REMLE$REML
        REMLE_delta=REMLE$delta
        # print("$$$")
        rm(REMLE)
        gc()
    }

    # print("!!!!")
    vids <- !is.na(ys[j,])
    yv <- ys[j, vids]
    if(!is.null(Z) & !is.null(K))  U <- eig.L$vectors * matrix(c(sqrt(1/(eig.L$values + REMLE_delta)),rep(sqrt(1/REMLE_delta),nr - tv)),nr,((nr-tv)+length(eig.L$values)),byrow=TRUE)
    if( is.null(Z) & !is.null(K))  U <- eig.L$vectors * matrix(  sqrt(1/(eig.L$values + REMLE_delta)),nr,length(eig.L$values),byrow=TRUE)

    if( !is.null(Z) & !is.null(K)) eig.full.plus.delta <- as.matrix(c((eig.L$values + REMLE_delta), rep(REMLE_delta,(nr - tv))))
    if( is.null(Z) & !is.null(K))  eig.full.plus.delta <- as.matrix((eig.L$values + REMLE_delta))
    # if(!is.null(K))
    # {
    #   if(length(which(eig.L$values < 0)) > 0 )
    #   {
    #     print("---------------------------------------------------The group kinship matrix at this compression level is not positive semidefinite. Please select another compression level.---------------------------------------------------")
    #     return(list(ps = NULL, REMLs = 999999, stats = NULL, effect.est = NULL, dfs = NULL,maf=NULL,nobs = NULL,Timmer=Timmer,Memory=Memory,
    #          vgs = 1.000, ves = 1.000, BLUP = NULL, BLUP_Plus_Mean = NULL,
    #          PEV = NULL, BLUE=NULL))
    #   }
    # }

  #Calculate the log likelihood function for the intercept only model

    X.int <- matrix(1,nrow(as.matrix(yv)),ncol(as.matrix(yv)))
    iX.intX.int <- solve(crossprod(X.int, X.int))
    iX.intY <- crossprod(X.int, as.matrix(as.matrix(yv)))
    beta.int <- crossprod(iX.intX.int, iX.intY)  #Note: we can use crossprod here becase iXX is symmetric
    X.int.beta.int <- X.int%*%beta.int

    logL0 <- 0.5*((-length(yv))*log(((2*pi)/length(yv))
                 *crossprod((yv-X.int.beta.int),(yv-X.int.beta.int)))
                  -length(yv))

    #print(paste("The value of logL0 inside of the optonly template is is",logL0, sep = ""))
  #print(paste("The value of nrow(as.matrix(ys[!is.na(ys)])) is ",nrow(as.matrix(ys[!is.na(ys)])), sep = ""))

    if(!is.null(K))
    {
      # print("!!!!!")
      yt <- yt <- crossprod(U, yv)
      X0t <- crossprod(U, X0)

      X0X0 <- crossprod(X0t, X0t)
      X0Y <- crossprod(X0t,yt)
      XY <- X0Y

      iX0X0 <- try(solve(X0X0),silent=TRUE)
      if(inherits(iX0X0, "try-error"))
      {
        iX0X0 <- MASS::ginv(X0X0)
        print("At least two of your covariates are linearly dependent. Please reconsider the covariates you are using for GWAS and GPS")
      }
      iXX <- iX0X0
    }

    if(is.null(K))
    {
      # print("!!!!!")
      # print(head(X))
      iXX <- try(solve(crossprod(X,X)),silent=TRUE)
      if(inherits(iXX, "try-error"))iXX <- MASS::ginv(crossprod(X,X))
      XY = crossprod(X,yv)
    }
    beta <- crossprod(iXX,XY) #Note: we can use crossprod here because iXX is symmetric
    X.beta <- X%*%beta
      
    beta.cv=beta
    # BLUE=X.beta
    # if(var(CVI[,2])!=0)
    # {
    #   XCV=cbind(1,as.matrix(CVI[,-1]))
    # }else{
    #   XCV=as.matrix(CVI[,-1])                               
    # }
    #CV.Extragenetic specified
    # beta.Extragenetic=beta
    if(CV.Extragenetic!=0)XCVI=X[,-c(1:(1+CV.Extragenetic)),drop=FALSE]
    XCVN=X[,c(1:(1+CV.Extragenetic)),drop=FALSE]
    if(CV.Extragenetic!=0)beta.I=as.numeric(beta)[-c(1:(1+CV.Extragenetic))]
    beta.N=as.numeric(beta)[c(1:(1+CV.Extragenetic))]
    BLUE.N=XCVN%*%beta.N
    BLUE.I=rep(0,length(BLUE.N))
    if(CV.Extragenetic!=0)BLUE.I=XCVI%*%beta.I
    #Interception only
    # if(length(beta)==1)XCV=X
    BLUE=cbind(BLUE.N,BLUE.I)
    if(!is.null(K))
    {
      U.times.yv.minus.X.beta <- crossprod(U,(yv-X.beta))
      logLM <- 0.5*(-length(yv)*log(((2*pi)/length(yv))*crossprod(U.times.yv.minus.X.beta,U.times.yv.minus.X.beta))
                    - sum(log(eig.full.plus.delta)) - length(yv))
    }else{
      U.times.yv.minus.X.beta <- yv-X.beta
      logLM <- 0.5*(-length(yv)*log(((2*pi)/length(yv))*crossprod(U.times.yv.minus.X.beta,U.times.yv.minus.X.beta)) - length(yv))
    }

  }#End if(optOnly)



#--------------------------------------------------------------------------------------------------------------------<
  Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="Trait")
  Memory=GAPIT.Memory(Memory=Memory,Infor="Trait")

  if(!is.null(K))
  {
    REMLE <- GAPIT.emma.REMLE(ys[j,], X, K, Z, ngrids, llim, ulim, esp, eig.R)

    Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="REML")
    Memory=GAPIT.Memory(Memory=Memory,Infor="REML")

    rm(eig.R)
    gc()
    Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="eig.R removed")
    Memory=GAPIT.Memory(Memory=Memory,Infor="eig.R removed")

    vgs <- REMLE$vg
    ves <- REMLE$ve
    REMLs <- REMLE$REML
    REMLE_delta=REMLE$delta
    # print("@@@")
    rm(REMLE)
    gc()
  }
  Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="REMLE removed")
  Memory=GAPIT.Memory(Memory=Memory,Infor="REMLE removed")
  # print(head(U))
  # print(!is.null(Z) & !is.null(K))
  # eig.L$values[eig.L$values<0]=0
  if(!is.null(K))
  {
    if(!is.null(Z))
    {
      U <- eig.L$vectors * matrix(c(sqrt(1/(eig.L$values + REMLE_delta)),rep(sqrt(1/REMLE_delta),nr - tv)),nr,((nr-tv)+length(eig.L$values)),byrow=TRUE)
    }else{
      U <- eig.L$vectors * matrix(  sqrt(1/(eig.L$values + REMLE_delta)),nr,length(eig.L$values),byrow=TRUE)
    }
  }
  
  if( !is.null(Z) & !is.null(K)) eig.full.plus.delta <- as.matrix(c((eig.L$values + REMLE_delta), rep(REMLE_delta,(nr - tv))))
  if( is.null(Z) & !is.null(K))  eig.full.plus.delta <- as.matrix((eig.L$values + REMLE_delta))



  # if(!is.null(K))
  # {
  #   if(length(which(eig.L$values < 0)) > 0 )
  #   {
  #      print("---------------------------------------------------The group kinship matrix at this compression level is not positive semidefinite. Please select another compression level.---------------------------------------------------")
  #      return(list(ps = NULL, REMLs = 999999, stats = NULL, effect.est = NULL, dfs = NULL,maf=NULL,nobs = NULL,Timmer=Timmer,Memory=Memory,
  #       vgs = 1.000, ves = 1.000, BLUP = NULL, BLUP_Plus_Mean = NULL,
  #       PEV = NULL, BLUE=NULL))
  #   }
  # }


  Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="U Matrix")
  Memory=GAPIT.Memory(Memory=Memory,Infor="U Matrix")

  if(SNP.P3D == TRUE)rm(eig.L)
  gc()

  Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="eig.L removed")
  Memory=GAPIT.Memory(Memory=Memory,Infor="eig.L removed")

  #-------------------------------------------------------------------------------------------------------------------->

  #The cases that go though multiple file once
  file.stop=file.to
  if(optOnly) file.stop=file.from
  if(fullGD)  file.stop=file.from
  if(!fullGD & !optOnly) {print("Screening SNPs from file...")}

  #Add loop for genotype data files
  for (file in file.from:file.stop)
  {
    Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="New Genotype file")
    Memory=GAPIT.Memory(Memory=Memory,Infor="New Genotype file")

    frag=1
    numSNP=file.fragment
    myFRG=NULL
    while(numSNP==file.fragment) 
    {     #this is problematic if the read end at the last line

      #initial previous SNP storage
         x.prev <- vector(length = 0)

      #force to skip the while loop if optOnly
         if(optOnly) numSNP=0

      #Determine the case of first file and first fragment: skip read file
         if(file==file.from & frag==1& SNP.fraction<1)
         {
            firstFileFirstFrag=TRUE
         }else{
            firstFileFirstFrag=FALSE
         }

      #In case of xs is not full GD, replace xs from file
         if(!fullGD & !optOnly & !firstFileFirstFrag )
         {
            Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="Clean myFRG")
            Memory=GAPIT.Memory(Memory=Memory,Infor="Clean myFRG")

        #update xs for each file
            rm(xs)
            rm(myFRG)
            gc()
            print(paste("Current file: ",file," , Fragment: ",frag,sep=""))

            Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="Read file fragment")
            Memory=GAPIT.Memory(Memory=Memory,Infor="Read file fragment")

            myFRG=GAPIT.Fragment( file.path = file.path,  
                          file.total = file.total,
                          file.G = file.G,
                          file.Ext.G = file.Ext.G,
#                          seed = seed,
                          SNP.fraction = SNP.fraction,
                          SNP.effect = SNP.effect,
                          SNP.impute = SNP.impute,
                          genoFormat = genoFormat,
                          file.GD = file.GD,
                          file.Ext.GD = file.Ext.GD,
                          file.GM = file.GM,
                          file.Ext.GM = file.Ext.GM,
                          file.fragment = file.fragment,
                          file = file,
                          frag = frag, 
                          Create.indicator = Create.indicator, 
                          Major.allele.zero = Major.allele.zero)

            Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="Genotype file converted")
            Memory=GAPIT.Memory(Memory=Memory,Infor="Genotype file converted")

      #print("-----------------------------------------------------------------")

            if(is.null(myFRG$GD))
            {
               xs=NULL
            }else{
               xs=myFRG$GD
            }

            if(!is.null(myFRG$GI))
            {
               colnames(myFRG$GI)=c("SNP","Chromosome","Position")
               GI=as.matrix(myFRG$GI)
            }      

            if(!is.null(myFRG$GI))
             {
               numSNP=ncol(myFRG$GD)
            }else{
               numSNP=0
            }
            if(is.null(myFRG))numSNP=0  #force to end the while loop
         } # end of if(!fullGD)

         if(fullGD)numSNP=0  #force to end the while loop
#Skip REML if xs is from a empty fragment file
         if(!is.null(xs))
         {
            if(is.null(dim(xs)) || nrow(xs) == 1)  xs <- matrix(xs, length(xs),1)
  
            xs <- as.matrix(xs)
  
            if(length(which(is.na(xs)))>0)
            {    #for the case where fragments are read in
               if(SNP.impute == "Major") xs[which(is.na(xs))] = 2
               if(SNP.impute == "Minor") xs[which(is.na(xs))] = 0
               if(SNP.impute == "Middle") xs[which(is.na(xs))] = 1
            } 
            m <- ncol(xs) #number of SNPs
            t <- nrow(xs) #number of individuals
            # print(m)
            # print(t)
            Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="Before cleaning")
            Memory=GAPIT.Memory(Memory=Memory,Infor="Before cleaning")
  #allocate spaces for SNPs
  
            gc()

            Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="After cleaning")
            Memory=GAPIT.Memory(Memory=Memory,Infor="After cleaning")

            dfs <- matrix(nrow = m, ncol = g)
            stats <- matrix(nrow = m, ncol = g)
            if(!Create.indicator) effect.est <- matrix(nrow = m, ncol = g)
            if(Create.indicator) effect.est <- NULL
            ps <- matrix(nrow = m, ncol = g)
            nobs <- matrix(nrow = m, ncol = g)
            maf <- matrix(nrow = m, ncol = g)
            rsquare_base <- matrix(nrow = m, ncol = g)
            rsquare <- matrix(nrow = m, ncol = g)
            df <- matrix(nrow = m, ncol = g)
            tvalue <- matrix(nrow = m, ncol = g)
            stderr <- matrix(nrow = m, ncol = g)
  #print(paste("Memory allocated.",sep=""))
            Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="Memory allocation")
            Memory=GAPIT.Memory(Memory=Memory,Infor="Memory allocation")

            if(optOnly)mloop=0
            if(!optOnly)mloop=m

  #Loop on SNPs
  #print(paste("Number of SNPs is ",mloop," in genotype file ",file, sep=""))

#set starting point of loop
            if(file==file.from&frag==1){loopStart=0}else{loopStart=1}
            for (i in loopStart:mloop)
            {
#print(i)
#--------------------------------------------------------------------------------------------------------------------<
                 normalCase=TRUE

                 if((i >0)&(floor(i/1000)==i/1000)) {print(paste("Genotype file: ", file,", SNP: ",i," ",sep=""))}
    # To extract current snp. It save computation for next one in case they are identical
                 if (i ==0&file==file.from&frag==1)
                 {
      #For the model without fitting SNP
                    vids <- !is.na(ys[j,]) #### Feng changed
                    xv <- ys[j, vids]*0+1 #### Feng changed
                 }

                 if(i >0 | file>file.from | frag>1)
                 {
                   if (Create.indicator)
                   { #I need create indicators and then calculate the minor allele frequency
                      condition.temp <- unique(xs[vids,i])
       #Define what a bit is    
                      bit=nchar(as.character(xs[vids[1],i]))      
       #Expand on the "which" statement below to include all instances of missing data 
                      if(bit==1)  condition <-  condition.temp[-which(condition.temp == "N")]
                      if(bit==2)  condition <-  condition.temp[-which(condition.temp == "NN")]
       #print(paste("The value of i is ", i, sep = "")) 
                      if(length(condition) <= 1)
                      {
                         dfs[i, ] <- rep(NA, g)
                         stats[i, ] <- rep(NA, g)
                         effect.est <- rbind(effect.est, c(i,rep(NA, g), rep(NA, g)))
                         ps[i, ] = rep(1, g)
                         rsquare[i, ] <- rep(NA,g)
                         rsquare_base[i, ]<-rep(NA,g)
                         maf[i, ] <- rep(0, g)
                         df[i, ] <- rep(NA,g)
                         tvalue[i, ] <- rep(NA,g)
                         stderr[i, ] <- rep(NA,g)
                         normalCase=FALSE
                         x.prev= vector(length = 0)
                      }
                   }# end of Create.indicator
                   if (normalCase)
                   {
       #print("The head of xs[vids,i] is")
       #print(head(xs[vids,i]))
      
                      if(Create.indicator)
                      {     #I need create indicators and then calculate the minor allele frequency
                        indicator <-  GAPIT.Create.Indicator(xs[vids,i], SNP.impute = SNP.impute)
                        xv <- indicator$x.ind
                        vids <- !is.na(xv[,1]) #### Feng changed
      
                        vids.TRUE=which(vids==TRUE)
                        vids.FALSE=which(vids==FALSE)
                        ns=nrow(xv)
                        ss=sum(xv[,ncol(xv)])

                        maf[i]=min(ss/ns,1-ss/ns)
                        nobs[i]=ns
       
                        q1 <- q0 + ncol(xv)    # This is done so that parameter estimates for all indicator variables are included
   
        #These two matrices need to be reinitiated for each SNP.
                        Xt <- matrix(NA,nr, q1)
                        iXX=matrix(NA,q1,q1)
                      }#end of Create.indicator
                  }#end of normalCase
     
                  if  (!Create.indicator)
                  { #### Feng changed
	   #print(xs[1:10,1:10])
                      xv <- xs[vids,i]
                      vids <- !is.na(xs[,i]) #### Feng changed
                      vids.TRUE=which(vids==TRUE)
                      vids.FALSE=which(vids==FALSE)
                      ns=length(xv)
	   #print(xv))
                      ss=sum(xv)
                      maf[i]=min(.5*ss/ns,1-.5*ss/ns)
                      nobs[i]=ns
                  }

                    nr <- sum(vids)
                    if(i ==1 & file==file.from&frag==1 & !Create.indicator) 
                    {
                       Xt <- matrix(NA,nr, q1)
                       iXX=matrix(NA,q1,q1)
                    }

                  }# end of i >0 | file>file.from | frag>1 449

    #Situation of no variation for SNP except the fisrt one(synthetic for EMMAx/P3D)
                  if((min(xv) == max(xv)) & (i >0 | file>file.from |frag>1))
                  {
                    dfs[i, ] <- rep(NA, g)
                    stats[i, ] <- rep(NA, g)
                    if(!Create.indicator) effect.est[i,] <- rep(NA, g)
                    if(Create.indicator) effect.est <- rbind(effect.est, c(i,rep(NA, g),rep(NA, g)))
                    ps[i, ] = rep(1, g)
                    rsquare[i, ] <- rep(NA,g)
                    rsquare_base[i, ]<-rep(NA,g)
                    df[i, ] <- rep(NA,g)
                    tvalue[i, ] <- rep(NA,g)
                    stderr[i, ] <- rep(NA,g)
                    normalCase=FALSE
                  }else if(identical(x.prev, xv))     #Situation of the SNP is identical to previous
                  {
                        if(i >1 | file>file.from | frag>1)
                        {
                           dfs[i, ] <- dfs[i - 1, ]
                           stats[i, ] <- stats[i - 1, ]
                           if(!Create.indicator) effect.est[i, ] <- effect.est[i - 1, ]
                           if(Create.indicator) effect.est <- rbind(effect.est, c(i, rep(NA, g), rep(NA, g))) #If the previous SNP is idnetical, indicate this by "NA"
                           ps[i, ] <- ps[i - 1, ]
                           rsquare[i, ] <- rsquare[i - 1, ]
                           rsquare_base[i, ] <-rsquare_base[i - 1, ]
                           df[i, ] <- df[i - 1, ]
                           tvalue[i, ] <- tvalue[i - 1, ]
                           stderr[i, ] <- stderr[i - 1, ]
                           normalCase=FALSE
                        }
                  }#end of identical(x.prev, xv)
#-------------------------------------------------------------------------------------------------------------------->
                  if(i == 0 &file==file.from &frag==1)
                  {

   #Calculate the log likelihood function for the intercept only model

   #vids <- !is.na(ys[j,])
                    yv <- ys[j, vids]
                    X.int <- matrix(1,nrow(as.matrix(yv)),ncol(as.matrix(yv)))
                    iX.intX.int <- solve(crossprod(X.int, X.int))
                    iX.intY <- crossprod(X.int, as.matrix(as.matrix(yv)))
                    beta.int <- crossprod(iX.intX.int, iX.intY)  #Note: we can use crossprod here becase iXX is symmetric
                    X.int.beta.int <- X.int%*%beta.int

                    logL0 <- 0.5*((-length(yv))*log(((2*pi)/length(yv))
                           *crossprod((yv-X.int.beta.int),(yv-X.int.beta.int)))
                           -length(yv))

    #print(paste("The value of logL0 inside of the calculating SNPs loop is", logL0, sep = ""))
                  }#end of i == 0 &file==file.from &frag==1
    #Normal case
                  if(normalCase)
                  {
      #nv <- sum(vids)
                     yv <- ys[j, vids] #### Feng changed
                     nr <- sum(vids) #### Feng changed
                     if(!is.null(Z) & !is.null(K))
                     {
                        r<- ncol(Z) ####Feng, add a variable to indicate the number of random effect
                        vran <- vids[1:r] ###Feng, add a variable to indicate random effects with nonmissing genotype
                        tv <- sum(vran)  #### Feng changed
                     }#end of !is.null(Z) & !is.null(K)
                     if(i >0 | file>file.from|frag>1)
                     { 
                       dfs[i, j] <- nr - q1
                       if(!Create.indicator) X <- cbind(X0[vids, , drop = FALSE], xs[vids,i])
                       if(Create.indicator)
                       {
                         X <- cbind(X0[vids, , drop = FALSE], xv)
          #if(i == 1) {print("the head of X for running GWAS is")}
          #if(i == 1) {print(head(X))}
                       }
                       # print(X)
                     } #end of i >0 | file>file.from|frag>1
       #Recalculate eig and REML if not using P3D  NOTE THIS USED TO BE BEFORE the two solid lines
                     if(SNP.P3D==FALSE & !is.null(K))
                     {
                       if(!is.null(Z)) eig.R <- emma.eigen.R.w.Z(Z, K, X) #This will be used to get REstricted ML (REML)
                       if(is.null(Z)) eig.R <- emma.eigen.R.wo.Z( K, X) #This will be used to get REstricted ML (REML)
                       if(!is.null(Z)) REMLE <- GAPIT.emma.REMLE(ys[j,], X, K, Z, ngrids, llim, ulim, esp, eig.R)
                       if(is.null(Z)) REMLE <- GAPIT.emma.REMLE(ys[j,], X, K, Z = NULL, ngrids, llim, ulim, esp, eig.R)
                       if(!is.null(Z) & !is.null(K)) U <- eig.L$vectors * matrix(c(sqrt(1/(eig.L$values + REMLE$delta)),rep(sqrt(1/REMLE$delta),nr - tv)),nr,((nr-tv)+length(eig.L$values)),byrow=TRUE)
                       if(is.null(Z) & !is.null(K)) U <- eig.L$vectors * matrix( sqrt(1/(eig.L$values + REMLE$delta)),nr,length(eig.L$values),byrow=TRUE)
                       # print(eig.L$vectors)
                       vgs <- REMLE$vg
                       ves <- REMLE$ve
                       REMLs <- REMLE$REML
                       REMLE_delta=REMLE$delta
                       # print("!!!")

                     }#end of SNP.P3D==FALSE & !is.null(K)
                     if(n==nr)
                     {
                       if(!is.null(K))
                       {
                          yt <- crossprod(U, yv)
                          if(i == 0 &file==file.from &frag==1)
                          {
                             X0t <- crossprod(U, X0)
                             Xt <- X0t
                          }
                          if(i > 0 | file>file.from |frag>1)
                          {
              #if(i ==1 & file==file.from&frag==1) Xt <- matrix(NA,nr, q1)
                            if(Create.indicator)
                            {
                              xst <- crossprod(U, X[,(q0+1):q1])
                              Xt[1:nr,1:q0] <- X0t
                              Xt[1:nr,(q0+1):q1] <- xst
                            }else{
                              xst <- crossprod(U, X[,ncol(X)])
                              Xt[1:nr,1:q0] <- X0t
                              Xt[1:nr,q1] <- xst
                            }#end of Create.indicator
                          }#i > 0 | file>file.from |frag>1
                       }else{
                          yt=yv
                          if(i == 0 &file==file.from &frag==1) X0t <- X0
                          if(i > 0 | file>file.from |frag>1) xst <- X[,ncol(X)]
                       }

                       if(i == 0 &file==file.from &frag==1)
                       {
                          X0X0 <- crossprod(X0t, X0t)
                          # print(X0X0)
                       }
                       if(i > 0 | file>file.from |frag>1)
                       {
         #if(i == 1)XX=matrix(NA,q1,q1)
                          X0Xst <- crossprod(X0t,xst)
                          XstX0 <- t(X0Xst)
                          xstxst <- crossprod(xst, xst)
                       }
                       if(is.na(X0X0[1,1])) ## by Jiabo 2022.8.10
                       {
                          Xt[is.na(Xt)]=0
                          yt[is.na(yt)]=0
                          XX=crossprod(Xt, Xt)
                       }
                       if(i == 0 &file==file.from & frag==1)
                       {
                          X0Y <- crossprod(X0t,yt)
                          XY <- X0Y
                       }
                       if(i > 0 | file>file.from |frag>1)
                       {
                         xsY <- crossprod(xst,yt)
                         XY <- c(X0Y,xsY)
                       }
        #XY = crossprod(Xt,yt)
                     }#end of n==nr

      #Missing SNP
                     if(n>nr)
                     {
                       UU=crossprod(U,U)
                       A11=UU[vids.TRUE,vids.TRUE]
                       A12=UU[vids.TRUE,vids.FALSE]
                       A21=UU[vids.FALSE,vids.TRUE]
                       A22=UU[vids.FALSE,vids.FALSE]
                       A22i =try(solve(A22),silent=TRUE )
                       if(inherits(A22i, "try-error")) A22i <- MASS::ginv(A22)
                       F11=A11-A12%*%A22i%*%A21
                       XX=crossprod(X,F11)%*%X
                       XY=crossprod(X,F11)%*%yv
                     }
                     if(i == 0 &file==file.from &frag==1)
                     {
                       iX0X0 <- try(solve(X0X0),silent=TRUE)
                       if(inherits(iX0X0, "try-error"))
                       {
                         iX0X0 <- MASS::ginv(X0X0)
                         print("At least two of your covariates are linearly dependent. Please reconsider the covariates you are using for GWAS and GPS")
                       }
                       iXX <- iX0X0
                     }
                     if(i > 0 | file>file.from |frag>1)
                     {
                       if(Create.indicator)
                       {
                         B22 <- xstxst - XstX0%*%iX0X0%*%X0Xst
                         invB22 <- solve(B22)
                         B21 <- tcrossprod(XstX0, iX0X0)
                         NeginvB22B21 <- crossprod(-invB22,B21)
                         B11 <- iX0X0 + as.numeric(invB22)*crossprod(B21,B21)
                         iXX[1:q0,1:q0]=B11
                         iXX[(q0+1):q1,(q0+1):q1]=solve(B22)  
                         iXX[(q0+1):q1,1:q0]=NeginvB22B21
                         iXX[1:q0,(q0+1):q1]=t(NeginvB22B21)
                       }else{
                         B22 <- xstxst - XstX0%*%iX0X0%*%X0Xst
                         invB22 <- 1/B22
          #B12 <- crossprod(iX0X0,X0Xst)
                         B21 <- tcrossprod(XstX0, iX0X0)
                         NeginvB22B21 <- crossprod(-invB22,B21)
          #B11 <- iX0X0 + B12%*%invB22%*%B21
                         B11 <- iX0X0 + as.numeric(invB22)*crossprod(B21,B21)
          #iXX <- rbind(cbind(B11,t(NeginvB22B21)), cbind(NeginvB22B21,invB22))
                         iXX[1:q0,1:q0]=B11
                         iXX[q1,q1]=1/B22
                         iXX[q1,1:q0]=NeginvB22B21
                         iXX[1:q0,q1]=NeginvB22B21
                       }#end of Create.indicator
                     }#end of i > 0 | file>file.from |frag>1
                     if(is.null(K))
                     {
                       iXX <- try(solve(crossprod(X,X)),silent=TRUE)
                       if(inherits(iXX, "try-error"))iXX <- MASS::ginv(crossprod(X,X))
                       XY = crossprod(X,yv)
                     }

                     beta <- crossprod(iXX,XY) #Note: we can use crossprod here becase iXX is symmetric
                     # print(iXX)
                     # print(XY)
                     # print(beta)
#--------------------------------------------------------------------------------------------------------------------<
                     if(i ==0 &file==file.from &frag==1)
                     { 
                        if(!is.null(K))
                        {
                          Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="ReducedModel")
                          Memory=GAPIT.Memory(Memory=Memory,Infor="ReducdModel")
                          XtimesBetaHat <- X%*%beta
                          YminusXtimesBetaHat <- ys[j,]- XtimesBetaHat
                          vgK <- vgs*K
                          Dt <- crossprod(U, YminusXtimesBetaHat)
                          if(!is.null(Z)) Zt <- crossprod(U, Z)
                          if(is.null(Z)) Zt <- t(U)
                       # print(i)
                       # print(ves)
                       # print(vgs)
                          if(is.na(X0X0[1,1]))
                          {
                          # Dt[is.na(Dt)]=0
                          # Zt[is.na(Zt)]=0
                            Dt[which(Dt=="NaN")]=0
                            Zt[which(Zt=="NaN")]=0
                          }
                       # if(X0X0[1,1] == "NaN") # by Jiabo 2022.8.10
                       # {
                       #   Dt[which(Dt=="NaN")]=0
                       #   Zt[which(Zt=="NaN")]=0
                       # }
                          BLUP <- K %*% crossprod(Zt, Dt) #Using K instead of vgK because using H=V/Vg
      #Clean up the BLUP starf to save memory
                          Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="before Dt clean")
                          Memory=GAPIT.Memory(Memory=Memory,Infor="before Dt clean")
                          gc()
                          Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="Dt clean")
                          Memory=GAPIT.Memory(Memory=Memory,Infor="Dt clean")
                          grand.mean.vector <- rep(beta[1], length(BLUP))
                          BLUP_Plus_Mean <- grand.mean.vector + BLUP
                          Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="BLUP")
                          Memory=GAPIT.Memory(Memory=Memory,Infor="BLUP")
                          C11=try(vgs*solve(crossprod(Xt,Xt)),silent=TRUE)
                          if(inherits(C11, "try-error")) C11=vgs*MASS::ginv(crossprod(Xt,Xt))
                          C21=-K%*%crossprod(Zt,Xt)%*%C11
                          Kinv=try(solve(K)  ,silent=TRUE  ) 
                          if(inherits(Kinv, "try-error")) Kinv=MASS::ginv(K)
                          if(!is.null(Z)) term.0=crossprod(Z,Z)/ves
                          if(is.null(Z)) term.0=diag(1/ves,nrow(K))
                          term.1=try(solve(term.0+Kinv/vgs ) ,silent=TRUE )
                          if(inherits(term.1, "try-error")) term.1=MASS::ginv(term.0+Kinv/vgs )
                          term.2=C21%*%crossprod(Xt,Zt)%*%K
                          C22=(term.1-term.2 )
                          PEV=as.matrix(diag(C22))
        # CVI may be > 1 element long
                          if(any(!is.null(CVI)))
                          {
                              if(var(CVI[,2])!=0)
                              {
                                XCV=cbind(1,as.matrix(CVI[,-1]))
                              }else{
                                XCV=as.matrix(CVI[,-1])                               
                              }
      		#CV.Extragenetic specified
                            # beta.Extragenetic=beta
                              if(ncol(XCV)>1)XCVI=XCV[,-c(1:(1+CV.Extragenetic)),drop=FALSE]
                              XCVN=XCV[,c(1:(1+CV.Extragenetic)),drop=FALSE]
                              if(ncol(XCV)>1)beta.I=as.numeric(beta)[-c(1:(1+CV.Extragenetic))]
                              beta.N=as.numeric(beta)[c(1:(1+CV.Extragenetic))]
                              BLUE.N=XCVN%*%beta.N
                              BLUE.I=rep(0,length(BLUE.N))
                              if(ncol(XCV)>1)BLUE.I=XCVI%*%beta.I
		#Interception only
                            # if(length(beta)==1)XCV=X
                            BLUE=cbind(BLUE.N,BLUE.I)
                            # if(inherits(BLUE, "try-error")) BLUE = NA
     #print("GAPIT just after BLUE")
                            Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="PEV")
                            Memory=GAPIT.Memory(Memory=Memory,Infor="PEV")
                          }else{
                            BLUE.I=rep(0,length(BLUP))
                            BLUE.N=rep(0,length(BLUP))
                            BLUE=cbind(BLUE.N,BLUE.I)
                          }#end of any(!is.na(CVI))
        # CVI may be > 1 element long.
        #if(is.na(CVI)) BLUE = NA
                          # if(any(is.null(CVI))) BLUE = NA
                          Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="K normal")
                          Memory=GAPIT.Memory(Memory=Memory,Infor="K normal")
                          if(SNP.P3D == TRUE) K=1  #NOTE: When SNP.P3D == FALSE, this line will mess up the spectral decomposition of the kinship matrix at each SNP.
                          rm(Zt)            
                          rm(Kinv)
                          rm(C11)
                          rm(C21)
                          rm(C22)
                          gc()
                          Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="K set to 1")
                          Memory=GAPIT.Memory(Memory=Memory,Infor="K set to 1")
                        }else{
                          YY=crossprod(yt, yt)
                          ves=(YY-crossprod(beta,XY))/(n-q0)
                          r=yt-X%*%iXX%*%XY
                          REMLs=-.5*(n-q0)*log(det(ves)) -.5*n -.5*(n-q0)*log(2*pi)
# REMLs=-.5*n*log(det(ves)) -.5*log(det(iXX)/ves) -.5*crossprod(r,r)/ves -.5*(n-q0)*log(2*pi)
                          vgs = 0
                          BLUP = 0
                          BLUP_Plus_Mean = NaN
                          PEV = ves
        #print(paste("X row:",nrow(X)," col:",ncol(X)," beta:",length(beta),sep=""))
                          XCV=as.matrix(cbind(1,data.frame(CVI[,-1])))
#CV.Extragenetic specified
                          # beta.Extragenetic=beta
                          if(!is.null(CV.Extragenetic))
                            {
                              if(ncol(XCV)>1)XCVI=XCV[,-c(1:(1+CV.Extragenetic)),drop=FALSE]
                              XCVN=XCV[,c(1:(1+CV.Extragenetic)),drop=FALSE]
                              if(ncol(XCV)>1)beta.I=as.numeric(beta)[-c(1:(1+CV.Extragenetic))]
                              beta.N=as.numeric(beta)[c(1:(1+CV.Extragenetic))]
                              # print(is.null(beta.I))
                              BLUE.I=rep(0,nrow(XCVI))
                              BLUE.N=rep(0,nrow(XCVN))
                              if(length(beta.I)>0)BLUE.I=try(XCVI%*%beta.I,silent=TRUE)
                              if(length(beta.N)>0)BLUE.N=try(XCVN%*%beta.N,silent=TRUE)
                            }else{
                              XCVI=as.matrix(cbind(1,data.frame(CVI[,-1])))
                              beta.I=beta
                              BLUE.I=rep(0,length(BLUE.I))
                              if(length(beta.I)>0)BLUE.I=try(XCVI%*%beta.I,silent=TRUE)
                              BLUE.N=rep(0,length(BLUE.I))
                            }
    #Interception only
                            # if(length(beta)==1)XCV=X
                            # print(head(BLUE.N))
                            # print(head(BLUE.I))
                            BLUE=cbind(BLUE.N,BLUE.I)
                            # print(head(BLUE))
#                           if(!is.null(CV.Extragenetic))
#                           {
#                             XCV=XCV[,-c(1:(1+CV.Extragenetic))]
#                             beta.Extragenetic=beta[-c(1:(1+CV.Extragenetic))]
#                           }
# #Interception only
#                           if(length(beta)==1)XCV=X
#         #BLUE=XCV%*%beta.Extragenetic   modified by jiabo wang 2016.11.21
#                           BLUE=try(XCV%*%beta.Extragenetic,silent=TRUE)
                          # if(inherits(BLUE, "try-error")) BLUE = NA
                        }# end of is.null(K)
                       beta.cv=beta
                       X.beta <- X%*%beta
                       if(!is.null(K))
                       {
                         U.times.yv.minus.X.beta <- crossprod(U,(yv-X.beta))
                         logLM_Base <- 0.5*(-length(yv)*log(((2*pi)/length(yv))*crossprod(U.times.yv.minus.X.beta,U.times.yv.minus.X.beta))
                                       - sum(log(eig.full.plus.delta)) - length(yv))

                       }else{
                         U.times.yv.minus.X.beta <- yv-X.beta
                         logLM_Base <- 0.5*(-length(yv)*log(((2*pi)/length(yv))*crossprod(U.times.yv.minus.X.beta,U.times.yv.minus.X.beta)) - length(yv))
                       }
                       rsquare_base_intitialized <- 1-exp(-(2/length(yv))*(logLM_Base-logL0))

                    }#end of i == 0 &file==file.from & frag==1
      #print(Create.indicator)
      #calculate t statistics and P-values
                     if(i > 0 | file>file.from |frag>1)
                     {
                       if(!Create.indicator)
                       {
                         if(!is.null(K)) stats[i, j] <- beta[q1]/sqrt(iXX[q1, q1] *vgs) 
                         if(is.null(K)) stats[i, j] <- beta[q1]/sqrt(iXX[q1, q1] *ves)
                         effect.est[i, ] <- beta[q1]
                         ps[i, ] <- 2 * stats::pt(abs(stats[i, ]), dfs[i, ],lower.tail = FALSE)
                         if(is.na(ps[i,]))ps[i,]=1
                       }else{
                         F.num.first.two <- crossprod(beta[(q0+1):q1], solve(iXX[(q0+1):q1,(q0+1):q1]))
                         if(!is.null(K)) stats[i, j] <- (F.num.first.two %*% beta[(q0+1):q1])/(length((q0+1):q1)*vgs)
                         if(is.null(K)) stats[i, j] <- (F.num.first.two %*% beta[(q0+1):q1])/(length((q0+1):q1)*ves)
                         effect.est <- rbind(effect.est, cbind(rep(i,length((q0+1):q1)), indicator$unique.SNPs, beta[(q0+1):q1])) #Replace with rbind
                         ps[i, ] <- stats::pf(stats[i, j], df1=length((q0+1):q1), df2=(nr-ncol(X)), lower.tail = FALSE) #Alex, are these denominator degrees of freedom correct?
                         dfs[i,] <- nr-nrow(X)
                       }
              #Calculate the maximum full likelihood function value and the r square
                       X.beta <- X%*%beta
                       if(!is.null(K))
                       {
                         U.times.yv.minus.X.beta <- crossprod(U,(yv-X.beta))
                         logLM <- 0.5*(-length(yv)*log(((2*pi)/length(yv))*crossprod(U.times.yv.minus.X.beta,U.times.yv.minus.X.beta))
                                  - sum(log(eig.full.plus.delta))- length(yv))
                       }else{
                         U.times.yv.minus.X.beta <- yv-X.beta
                         logLM <- 0.5*(-length(yv)*log(((2*pi)/length(yv))*crossprod(U.times.yv.minus.X.beta,U.times.yv.minus.X.beta)) - length(yv))
                       }

                       rsquare_base[i, ] <- rsquare_base_intitialized
                       rsquare[i, ] <- 1-exp(-(2/length(yv))*(logLM-logL0))
                       # print(head(U))
                       # print(U)
                       # print(sum(log(eig.full.plus.delta)))
                       if(rsquare[i, ]<rsquare_base[i, ])
                       {  
                          rsquare[i, ]=NA
                          effect.est[i]=NA
                        }
                  #Calculate df, t value and standard error _xiaolei changed
                       df[i,] <- dfs[i,]

                       tvalue[i,] <- stats[i, j]
                       stderr[i,] <- beta[ncol(CVI)+1]/stats[i, j]
                  #stderr[i,] <- sqrt(vgs)
                  # modified by Jiabo at 20191115
                     }#end of i > 0 | file>file.from |frag>1
#-------------------------------------------------------------------------------------------------------------------->
                  } # End of if(normalCase) 577
                  x.prev=xv #update SNP
            } # End of loop on SNPs 434

            Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="Screening SNPs")
            Memory=GAPIT.Memory(Memory=Memory,Infor="Screening SNPs")
# print(head(tvalue))
# print(head(stderr))
# print(head(effect.est))
#output p value for the genotype file
            if(!fullGD)
            { 
              utils::write.table(GI, paste("GAPIT.TMP.GI.",name.of.trait,file,".",frag,".txt",sep=""), quote = FALSE, sep = "\t", row.names = FALSE,col.names = TRUE)
              utils::write.table(ps, paste("GAPIT.TMP.ps.",name.of.trait,file,".",frag,".txt",sep=""), quote = FALSE, sep = "\t", row.names = FALSE,col.names = FALSE)
              utils::write.table(maf, paste("GAPIT.TMP.maf.",name.of.trait,file,".",frag,".txt",sep=""), quote = FALSE, sep = "\t", row.names = FALSE,col.names = FALSE)
              utils::write.table(nobs, paste("GAPIT.TMP.nobs.",name.of.trait,file,".",frag,".txt",sep=""), quote = FALSE, sep = "\t", row.names = FALSE,col.names = FALSE)
              utils::write.table(rsquare_base, paste("GAPIT.TMP.rsquare.base.",name.of.trait,file,".",frag,".txt",sep=""), quote = FALSE, sep = "\t", row.names = FALSE,col.names = FALSE)
              utils::write.table(rsquare, paste("GAPIT.TMP.rsquare.",name.of.trait,file,".",frag,".txt",sep=""), quote = FALSE, sep = "\t", row.names = FALSE,col.names = FALSE)
              utils::write.table(df, paste("GAPIT.TMP.df.",name.of.trait,file,".",frag,".txt",sep=""), quote = FALSE, sep = "\t", row.names = FALSE,col.names = FALSE)
              utils::write.table(tvalue, paste("GAPIT.TMP.tvalue.",name.of.trait,file,".",frag,".txt",sep=""), quote = FALSE, sep = "\t", row.names = FALSE,col.names = FALSE)
              utils::write.table(stderr, paste("GAPIT.TMP.stderr.",name.of.trait,file,".",frag,".txt",sep=""), quote = FALSE, sep = "\t", row.names = FALSE,col.names = FALSE)
              utils::write.table(effect.est, paste("GAPIT.TMP.effect.est.",name.of.trait,file,".",frag,".txt",sep=""), quote = FALSE, sep = "\t", row.names = FALSE,col.names = FALSE)
  #rm(dfs,stats,ps,nobs,maf,GI)   #This cause problem on return
  #gc()
            }
            frag=frag+1   #Progress to next fragment
         } #end of if(!is.null(X))383

    } #end of numSNP==file.fragment 304
    # while(numSNP==file.fragment) 



   } # Ebd of loop on file 296
  # for (file in file.from:file.stop)

  } # End of loop on traits j in 1:g 120
  # for (j in 1:g)

  Timmer=GAPIT.Timmer(Timmer=Timmer,Infor="GWAS done for this Trait")
  Memory=GAPIT.Memory(Memory=Memory,Infor="GWAS done for this Trait")
  #print("GAPIT.EMMAxP3D accomplished successfully!")
  # print(head(BLUE))
    return(list(ps = ps, REMLs = -2*REMLs, stats = stats, effect.est = effect.est, rsquare_base = rsquare_base, rsquare = rsquare, dfs = dfs, df = df, tvalue = tvalue, stderr = stderr,maf=maf,nobs = nobs,Timmer=Timmer,Memory=Memory,
        vgs = vgs, ves = ves, BLUP = BLUP, BLUP_Plus_Mean = BLUP_Plus_Mean,
        PEV = PEV, BLUE=BLUE, logLM = logLM,effect.snp=effect.est,effect.cv=beta.cv))

}#end of GAPIT.EMMAxP3D function
#=============================================================================================
jiabowang/GAPIT3 documentation built on March 6, 2025, 2:21 a.m.