#' @title stepwise qtl analysis forcing an interactive covariate
#'
#' @description
#' \code{stepwiseqtl.int} see qtl::stepwiseqtl for details
#' @import qtl
#' @export
stepwiseqtl.int <-
function(cross, chr, pheno.col=1, qtl, formula, max.qtl=10, covar=NULL,
method=c("imp", "hk"), model=c("normal", "binary"),
incl.markers=TRUE, refine.locations=TRUE,
additive.only=FALSE, scan.pairs=FALSE, penalties,
keeplodprofile=TRUE, keeptrace=FALSE, verbose=TRUE,
tol=1e-4, maxit=1000, require.fullrank=FALSE)
{
if(!("cross" %in% class(cross)))
stop("Input should have class \"cross\".")
if(!missing(chr)) cross <- subset(cross, chr)
if(missing(qtl)) qtl <- NULL
if(missing(formula)) formula <- NULL
method <- match.arg(method)
model <- match.arg(model)
# force covar to be a data frame
if(!is.null(covar) && !is.data.frame(covar)) {
if(is.matrix(covar) && is.numeric(covar))
covar <- as.data.frame(covar, stringsAsFactors=TRUE)
else stop("covar should be a data.frame")
}
if(!missing(penalties)) {
if(is.matrix(penalties)) {
penalties <- penalties[1,]
warning("penalties should be a vector; only the first row will be used")
}
if(length(penalties)==6) { # X-chr-specific penalties
chrtype <- vapply(cross$geno, class, "")
if(!all(chrtype=="A")) {
if(scan.pairs)
warning("scan.pairs=TRUE not implemented X-chr specific penalties; ignored.")
return(stepwiseqtlX(cross, chrnames(cross), pheno.col=pheno.col, qtl=qtl,
formula=formula, max.qtl=max.qtl, k_f=3, stop.rule=0,
covar=covar, method=method, model=model, incl.markers=incl.markers,
refine.locations=refine.locations, additive.only=additive.only,
penalties=penalties, keeplodprofile=keeplodprofile, keeptrace=keeptrace,
verbose=verbose, tol=tol, maxit=maxit, require.fullrank=require.fullrank))
}
penalties <- penalties[c(1,3,4)] # just the autosomal penalties
}
}
if(LikePheVector(pheno.col, nind(cross), nphe(cross))) {
cross$pheno <- cbind(pheno.col, cross$pheno)
pheno.col <- 1
}
chrtype <- sapply(cross$geno, class)
if(any(chrtype=="X")) {
Xadjustment <- scanoneXnull(class(cross)[1], getsex(cross), attributes(cross))
forceXcovar <- Xadjustment$adjustX
Xcovar <- Xadjustment$sexpgmcovar
}
else forceXcovar <- FALSE
if(!is.null(qtl)) { # start f.s. at somewhere other than the null
if( !("qtl" %in% class(qtl)) )
stop("The qtl argument must be an object of class \"qtl\".")
# check that chromosomes were retained, otherwise give error
m <- is.na(match(qtl$chr, names(cross$geno)))
if(any(m)) {
wh <- qtl$chr[m]
if(length(wh) > 1)
stop("Chromosomes ", paste(wh, collapse=", "), " (in QTL object) not in cross object.")
else
stop("Chromosome ", wh, " (in QTL object) not in cross object.")
}
if(is.null(formula)) { # create a formula with all covariates and all QTL add've
if(!is.null(covar))
formula <- paste("y ~ ", paste(names(covar), collapse="+"), "+")
else
formula <- "y ~ "
qnames<-paste("Q", 1:length(qtl$chr), sep="")
formula <- paste(formula, paste(qnames, collapse="+"), "+",
paste(paste(qnames, "covar", sep = ":"), collapse = " + "))
}
else {
temp <- checkStepwiseqtlStart(qtl, formula, covar)
qtl <- temp$qtl
formula <- temp$formula
}
startatnull <- FALSE
}
else {
if(!is.null(formula))
warning("formula ignored if qtl is not provided.")
startatnull <- TRUE
}
# revise names in qtl object
if(!startatnull)
qtl$name <- qtl$altname
# check that we have the right stuff for the selected method
if(method=="imp") {
if(!("draws" %in% names(cross$geno[[1]]))) {
if("prob" %in% names(cross$geno[[1]])) {
warning("The cross doesn't contain imputations; using method=\"hk\".")
method <- "hk"
}
else
stop("You need to first run sim.geno.")
}
}
else {
if(!("prob" %in% names(cross$geno[[1]]))) {
if("draws" %in% names(cross$geno[[1]])) {
warning("The cross doesn't contain QTL genotype probabilities; using method=\"imp\".")
method <- "imp"
}
else
stop("You need to first run calc.genoprob.")
}
}
if(method=="imp") qtlmethod <- "draws"
else qtlmethod <- "prob"
if(!is.null(qtl) && qtl$n.ind != nind(cross)) {
map <- attr(qtl, "map") # save map
warning("No. individuals in qtl object doesn't match that in the input cross; re-creating qtl object.")
if(method=="imp")
qtl <- makeqtl(cross, qtl$chr, qtl$pos, qtl$name, what="draws")
else
qtl <- makeqtl(cross, qtl$chr, qtl$pos, qtl$name, what="prob")
attr(qtl, "map") <- map
}
if(!is.null(qtl) && method=="imp" && dim(qtl$geno)[3] != dim(cross$geno[[1]]$draws)[3]) {
map <- attr(qtl, "map") # save map
warning("No. imputations in qtl object doesn't match that in the input cross; re-creating qtl object.")
qtl <- makeqtl(cross, qtl$chr, qtl$pos, qtl$name, what="draws")
attr(qtl, "map") <- map
}
# check that qtl object matches the method
if(!startatnull) {
if(method=="imp" && !("geno" %in% names(qtl)))
stop("The qtl object doesn't contain imputations; re-run makeqtl with what=\"draws\".")
else if(method=="hk" && !("prob" %in% names(qtl)))
stop("The qtl object doesn't contain QTL genotype probabilities; re-run makeqtl with what=\"prob\".")
}
# check phenotypes and covariates; drop ind'ls with missing values
if(length(pheno.col) > 1) {
pheno.col <- pheno.col[1]
warning("stepwiseqtl can take just one phenotype; only the first will be used")
}
if(is.character(pheno.col)) {
num <- find.pheno(cross, pheno.col)
if(is.na(num))
stop("Couldn't identify phenotype \"", pheno.col, "\"")
pheno.col <- num
}
if(any(pheno.col < 1 | pheno.col > nphe(cross)))
stop("pheno.col values should be between 1 and the no. phenotypes")
pheno <- cross$pheno[,pheno.col]
if(!is.null(covar)) phcovar <- cbind(pheno, covar)
else phcovar <- as.data.frame(pheno, stringsAsFactors=TRUE)
hasmissing <- apply(phcovar, 1, function(a) any(is.na(a)))
if(all(hasmissing))
stop("All individuals are missing phenotypes or covariates.")
if(any(hasmissing)) {
pheno <- pheno[!hasmissing]
cross <- subset(cross, ind=!hasmissing)
if(!is.null(covar)) covar <- covar[!hasmissing,,drop=FALSE]
if(!startatnull) {
if(method=="imp")
qtl$geno <- qtl$geno[!hasmissing,,,drop=FALSE]
else {
for(i in seq(along=qtl$prob))
qtl$prob[[i]] <- qtl$prob[[i]][!hasmissing,,drop=FALSE]
}
qtl$n.ind <- sum(!hasmissing)
}
}
if(max.qtl < 1)
stop("Need max.qtl > 0 if we are to scan for qtl")
if(is.null(covar)) {
lod0 <- 0
if(startatnull)
firstformula <- y~Q1
else firstformula <- formula
}
else {
lod0 <- length(pheno)/2 * log10(sum((pheno-mean(pheno))^2) / sum(lm(pheno ~ as.matrix(covar))$resid^2))
if(startatnull)
firstformula <- as.formula(paste("y~", paste(names(covar), collapse="+"), "+",
"Q1", "+", paste(paste("Q1",names(covar), sep = ":"),collapse = " + ")))
else firstformula <- formula
}
# penalties
cross.type <- class(cross)[1]
if(missing(penalties)) {
if(cross.type=="f2") {
penalties <- c(3.52, 4.28, 2.69)
}
else if(cross.type=="bc") {
penalties <- c(2.69, 2.62, 1.19)
}
else
stop("No default penalties available for cross type ", cross.type)
}
else if(length(penalties) != 3) {
if(length(penalties)==1) {
if(additive.only)
penalties <- c(penalties,Inf,Inf)
else
stop("You must include a penalty for interaction terms.")
}
else {
if(length(penalties)==2)
penalties <- penalties[c(1,2,2)]
else {
warning("penalties should have length 3")
penalties <- penalties[1:3]
}
}
}
if(verbose > 2) verbose.scan <- TRUE
else verbose.scan <- FALSE
curbest <- NULL
curbestplod <- 0
# initial scan : either 1d or 2d
if(verbose) cat(" -Initial scan\n")
if(startatnull) {
if(forceXcovar) {
if(is.null(covar)) covar.w.X <- Xcovar
else covar.w.X <- cbind(covar, Xcovar)
}
else covar.w.X <- covar
if(additive.only || max.qtl == 1 || !scan.pairs) {
suppressWarnings(out <- scanone(cross, pheno.col=pheno.col, method=method, model=model,
addcovar=covar.w.X))
lod <- max(out[,3], na.rm=TRUE)
if(verbose) cat("initial lod: ", lod, "\n")
curplod <- calc.plod(lod, c(1,0,0), penalties=penalties)
wh <- which(!is.na(out[,3]) & out[,3]==lod)
if(length(wh) > 1) wh <- sample(wh, 1)
qtl <- makeqtl(cross, as.character(out[wh,1]), out[wh,2], "Q1",
what=qtlmethod)
formula <- firstformula
n.qtl <- 1
}
else {
suppressWarnings(out <- scantwo(cross, pheno.col=pheno.col, method=method, model=model,
incl.markers=incl.markers, addcovar=covar.w.X, verbose=verbose.scan))
lod <- out$lod
lod1 <- max(diag(lod), na.rm=TRUE)
plod1 <- calc.plod(lod1, c(1,0,0), penalties=penalties)
loda <- max(lod[upper.tri(lod)], na.rm=TRUE)
ploda <- calc.plod(loda, c(2,0,0),
penalties=penalties)
lodf <- max(lod[lower.tri(lod)], na.rm=TRUE)
plodf <- calc.plod(lodf, c(2,0,1),
penalties=penalties)
if(plod1 > ploda && plod1 > plodf) {
wh <- which(!is.na(diag(lod)) & diag(lod) == lod1)
if(length(wh) > 1) wh <- sample(wh, 1)
m <- out$map[wh,]
qtl <- makeqtl(cross, as.character(m[1,1]), m[1,2], "Q1", what=qtlmethod)
formula <- firstformula
n.qtl <- 1
lod <- lod1
curplod <- plod1
}
else if(ploda > plodf) {
temp <- max(out, what="add")
if(nrow(temp) > 1)
temp <- temp[sample(1:nrow(temp),1),]
qtl <- makeqtl(cross, c(as.character(temp[1,1]), as.character(temp[1,2])),
c(temp[1,3], temp[1,4]), c("Q1","Q2"), what=qtlmethod)
formula <- as.formula(paste(deparseQTLformula(firstformula), "+Q2+", paste(paste("Q2",names(covar), sep = ":"),collapse = " + ")))
curplod <- ploda
lod <- loda
n.qtl <- 2
}
else {
temp <- max(out, what="full")
if(nrow(temp) > 1)
temp <- temp[sample(1:nrow(temp),1),]
qtl <- makeqtl(cross, c(as.character(temp[1,1]), as.character(temp[1,2])),
c(temp[1,3], temp[1,4]), c("Q1","Q2"), what=qtlmethod)
formula <- as.formula(paste(deparseQTLformula(firstformula), "+Q2+Q1:Q2+", paste(paste("Q2",names(covar), sep = ":"),collapse = " + ")))
curplod <- plodf
lod <- lodf
n.qtl <- 2
}
}
} # start at null
else {
if(verbose) cat(" ---Starting at a model with", length(qtl$chr), "QTL\n")
if(refine.locations) {
if(verbose) cat(" ---Refining positions\n")
rqtl <- refineqtl(cross, pheno.col=pheno.col, qtl=qtl,
covar=covar, formula=formula, method=method,
verbose=verbose.scan, incl.markers=incl.markers,
keeplodprofile=FALSE, forceXcovar=forceXcovar)
if(any(rqtl$pos != qtl$pos)) { # updated positions
if(verbose) cat(" --- Moved a bit\n")
}
qtl <- rqtl
}
fit <- fitqtl(cross, pheno.col, qtl, covar=covar, formula=formula,
method=method, model=model, dropone=FALSE, get.ests=FALSE,
run.checks=FALSE, tol=tol, maxit=maxit, forceXcovar=forceXcovar)
lod <- fit$result.full[1,4] - lod0
if(require.fullrank && attr(fit, "matrix.rank") < attr(fit, "matrix.ncol")) lod <- 0
curplod <- calc.plod(lod, countqtlterms(formula, ignore.covar=TRUE),
penalties=penalties)
attr(qtl, "pLOD") <- curplod
n.qtl <- length(qtl$chr)
}
attr(qtl, "formula") <- deparseQTLformula(formula)
attr(qtl, "pLOD") <- curplod
if(curplod > 0) {
curbest <- qtl
curbestplod <- curplod
if(verbose)
cat("** new best ** (pLOD increased by ", round(curplod, 4), ")\n", sep="")
}
if(keeptrace) {
temp <- list(chr=qtl$chr, pos=qtl$pos)
attr(temp, "formula") <- deparseQTLformula(formula)
attr(temp, "pLOD") <- curplod
class(temp) <- c("compactqtl", "list")
thetrace <- list("0"=temp)
}
if(verbose)
cat(" no.qtl = ", n.qtl, " pLOD =", curplod, " formula:",
deparseQTLformula(formula), "\n")
if(verbose > 1)
cat(" qtl:", paste(qtl$chr, round(qtl$pos,1), sep="@"), "\n")
# start stepwise search
i <- 0
while(n.qtl < max.qtl) {
i <- i+1
if(verbose) {
cat(" -Step", i, "\n")
cat(" ---Scanning for additive qtl\n")
}
out <- addqtl(cross, pheno.col=pheno.col, qtl=qtl, covar=covar,
formula=formula, method=method, incl.markers=incl.markers,
verbose=verbose.scan, forceXcovar=forceXcovar,
require.fullrank=require.fullrank)
curlod <- max(out[,3], na.rm=TRUE)
wh <- which(!is.na(out[,3]) & out[,3]==curlod)
if(length(wh) > 1) wh <- sample(wh,1)
curqtl <- addtoqtl(cross, qtl, as.character(out[wh,1]), out[wh,2],
paste("Q", n.qtl+1, sep=""))
curformula <- as.formula(paste(deparseQTLformula(formula), "+Q", n.qtl+1,
paste(paste(paste("+Q", n.qtl+1, sep=""),names(covar), sep = ":"),collapse = " + "),
sep=""))
curlod <- curlod + lod
curplod <- calc.plod(curlod, countqtlterms(curformula, ignore.covar=TRUE),
penalties=penalties)
if(verbose) cat(" plod =", curplod, "\n")
curnqtl <- n.qtl+1
if(!additive.only) {
for(j in 1:n.qtl) {
if(verbose)
cat(" ---Scanning for QTL interacting with Q", j, "\n", sep="")
thisformula <- as.formula(paste(deparseQTLformula(formula), "+Q", n.qtl+1,
"+Q", j, ":Q", n.qtl+1, sep=""))
out <- addqtl(cross, pheno.col=pheno.col, qtl=qtl, covar=covar,
formula=thisformula, method=method, incl.markers=incl.markers,
verbose=verbose.scan, forceXcovar=forceXcovar,
require.fullrank=require.fullrank)
thislod <- max(out[,3], na.rm=TRUE)
wh <- which(!is.na(out[,3]) & out[,3]==thislod)
if(length(wh) > 1) wh <- sample(wh,1)
thisqtl <- addtoqtl(cross, qtl, as.character(out[wh,1]), out[wh,2],
paste("Q", n.qtl+1, sep=""))
thislod <- thislod + lod
thisplod <- calc.plod(thislod, countqtlterms(thisformula, ignore.covar=TRUE),
penalties=penalties)
if(verbose) cat(" plod =", thisplod, "\n")
if(thisplod > curplod) {
curformula <- thisformula
curplod <- thisplod
curlod <- thislod
curqtl <- thisqtl
curnqtl <- n.qtl+1
}
}
if(n.qtl > 1) {
if(verbose)
cat(" ---Look for additional interactions\n")
temp <- addint(cross, pheno.col, qtl, covar=covar, formula=formula,
method=method, qtl.only=TRUE, verbose=verbose.scan,
require.fullrank=require.fullrank)
if(!is.null(temp)) {
thislod <- max(temp[,3], na.rm=TRUE)
wh <- which(!is.na(temp[,3]) & temp[,3] == thislod)
if(length(wh) > 1) wh <- sample(wh, 1)
thisformula <- as.formula(paste(deparseQTLformula(formula), "+", rownames(temp)[wh]))
thislod <- thislod + lod
thisplod <- calc.plod(thislod, countqtlterms(thisformula, ignore.covar=TRUE),
penalties=penalties)
if(verbose) cat(" plod =", thisplod, "\n")
if(thisplod > curplod) {
curformula <- thisformula
curplod <- thisplod
curlod <- thislod
curqtl <- qtl
curnqtl <- n.qtl
}
}
}
if(scan.pairs) {
if(verbose)
cat(" ---Scan for an additional pair\n")
out <- addpair(cross, pheno.col=pheno.col, qtl=qtl, covar=covar,
formula=formula, method=method, incl.markers=incl.markers,
verbose=verbose.scan, forceXcovar=forceXcovar)
thelod <- out$lod
loda <- max(thelod[upper.tri(thelod)], na.rm=TRUE)
ploda <- calc.plod(loda+lod, c(2,0,0,0)+countqtlterms(formula, ignore.covar=TRUE),
penalties=penalties)
lodf <- max(thelod[lower.tri(thelod)], na.rm=TRUE)
plodf <- calc.plod(lodf+lod, c(2,0,1,1)+countqtlterms(formula, ignore.covar=TRUE),
penalties=penalties)
if(verbose) {
cat(" ploda =", ploda, "\n")
cat(" plodf =", plodf, "\n")
}
if(ploda > curplod && loda > plodf) {
temp <- max(out, what="add")
if(nrow(temp) > 1)
temp <- temp[sample(1:nrow(temp),1),]
curqtl <- addtoqtl(cross, qtl, c(as.character(temp[1,1]), as.character(temp[1,2])),
c(temp[1,3], temp[1,4]), paste("Q", n.qtl+1:2, sep=""))
curformula <- as.formula(paste(deparseQTLformula(formula), "+Q", n.qtl+1, "+Q",
n.qtl+2, sep=""))
curplod <- ploda
lod <- loda+lod
curnqtl <- n.qtl+2
}
else if(plodf > curplod) {
temp <- max(out, what="full")
if(nrow(temp) > 1)
temp <- temp[sample(1:nrow(temp),1),]
curqtl <- addtoqtl(cross, qtl, c(as.character(temp[1,1]), as.character(temp[1,2])),
c(temp[1,3], temp[1,4]), paste("Q", n.qtl+1:2, sep=""))
curformula <- as.formula(paste(deparseQTLformula(formula), "+Q", n.qtl+1, "+Q",
n.qtl+2, "+Q", n.qtl+1, ":Q", n.qtl+2,
sep=""))
curplod <- plodf
lod <- lodf+lod
curnqtl <- n.qtl+2
}
}
}
qtl <- curqtl
n.qtl <- curnqtl
attr(qtl, "formula") <- deparseQTLformula(curformula)
attr(qtl, "pLOD") <- curplod
formula <- curformula
lod <- curlod
if(refine.locations) {
if(verbose) cat(" ---Refining positions\n")
rqtl <- refineqtl(cross, pheno.col=pheno.col, qtl=qtl,
covar=covar, formula=formula, method=method,
verbose=verbose.scan, incl.markers=incl.markers,
keeplodprofile=FALSE, forceXcovar=forceXcovar)
if(any(rqtl$pos != qtl$pos)) { # updated positions
if(verbose) cat(" --- Moved a bit\n")
qtl <- rqtl
fit <- fitqtl(cross, pheno.col, qtl, covar=covar, formula=formula,
method=method, model=model, dropone=FALSE, get.ests=FALSE,
run.checks=FALSE, tol=tol, maxit=maxit, forceXcovar=forceXcovar)
lod <- fit$result.full[1,4] - lod0
if(require.fullrank && attr(fit, "matrix.rank") < attr(fit, "matrix.ncol")) lod <- 0
curplod <- calc.plod(lod, countqtlterms(formula, ignore.covar=TRUE),
penalties=penalties)
attr(qtl, "pLOD") <- curplod
}
}
if(verbose)
cat(" no.qtl = ", n.qtl, " pLOD =", curplod, " formula:",
deparseQTLformula(formula), "\n")
if(verbose > 1)
cat(" qtl:", paste(qtl$chr, round(qtl$pos,1), sep="@"), "\n")
if(curplod > curbestplod) {
if(verbose)
cat("** new best ** (pLOD increased by ", round(curplod - curbestplod, 4),
")\n", sep="")
curbest <- qtl
curbestplod <- curplod
}
if(keeptrace) {
temp <- list(chr=qtl$chr, pos=qtl$pos)
attr(temp, "formula") <- deparseQTLformula(formula)
attr(temp, "pLOD") <- curplod
class(temp) <- c("compactqtl", "list")
temp <- list(temp)
names(temp) <- i
thetrace <- c(thetrace, temp)
}
if(n.qtl >= max.qtl) break
}
if(verbose) cat(" -Starting backward deletion\n")
while(n.qtl > 1) {
i <- i+1
out <- fitqtl(cross, pheno.col, qtl, covar=covar, formula=formula,
method=method, model=model, dropone=TRUE, get.ests=FALSE,
run.checks=FALSE, tol=tol, maxit=maxit, forceXcovar=forceXcovar)$result.drop
formulas <- attr(out, "formulas")
lods <- attr(out, "lods")
rn <- rownames(out)
# ignore things with covariates
wh <- c(grep("^[Qq][0-9]+$", rn),
grep("^[Qq][0-9]+:[Qq][0-9]+$", rn))
out <- out[wh,,drop=FALSE]
formulas <- formulas[wh]
lods <- lods[wh]
# need to calculate penalized LOD scores here
plod <- rep(NA, length(lods))
for(modi in seq(along=plod))
plod[modi] <- calc.plod(lods[modi], countqtlterms(formulas[modi], ignore.covar=TRUE),
penalties=penalties)
maxplod <- max(plod, na.rm=TRUE)
wh <- which(!is.na(plod) & plod==maxplod)
if(length(wh) > 1) wh <- sample(wh, 1)
todrop <- rownames(out)[wh]
if(verbose) cat(" ---Dropping", todrop, "\n")
if(length(grep(":", todrop)) > 0) { # dropping an interaction
theterms <- attr(terms(formula), "factors")
wh <- colnames(theterms)==todrop
if(!any(wh)) stop("Confusion about what interation to drop!")
theterms <- colnames(theterms)[!wh]
formula <- as.formula(paste("y~", paste(theterms, collapse="+")))
}
else {
numtodrop <- as.numeric(substr(todrop, 2, nchar(todrop)))
theterms <- attr(terms(formula), "factors")
cn <- colnames(theterms)
g <- c(grep(paste("^[Qq]", numtodrop, "$", sep=""), cn),
grep(paste("^[Qq]", numtodrop, ":", sep=""), cn),
grep(paste(":[Qq]", numtodrop, "$", sep=""), cn))
cn <- cn[-g]
formula <- as.formula(paste("y~", paste(cn, collapse="+")))
if(n.qtl > numtodrop) {
for(j in (numtodrop+1):n.qtl)
formula <- reviseqtlnuminformula(formula, j, j-1)
}
qtl <- dropfromqtl(qtl, index=numtodrop)
qtl$name <- qtl$altname <- paste("Q", 1:qtl$n.qtl, sep="")
n.qtl <- n.qtl - 1
}
# call fitqtl again, just in case
fit <- fitqtl(cross, pheno.col, qtl, covar=covar, formula=formula,
method=method, model=model, dropone=FALSE, get.ests=FALSE,
run.checks=FALSE, tol=tol, maxit=maxit, forceXcovar=forceXcovar)
lod <- fit$result.full[1,4] - lod0
if(require.fullrank && attr(fit, "matrix.rank") < attr(fit, "matrix.ncol")) lod <- 0
curplod <- calc.plod(lod, countqtlterms(formula, ignore.covar=TRUE),
penalties=penalties)
if(verbose)
cat(" no.qtl = ", n.qtl, " pLOD =", curplod, " formula:",
deparseQTLformula(formula), "\n")
if(verbose > 1)
cat(" qtl:", paste(qtl$chr, round(qtl$pos,1), sep=":"), "\n")
attr(qtl, "formula") <- deparseQTLformula(formula)
attr(qtl, "pLOD") <- curplod
if(refine.locations) {
if(verbose) cat(" ---Refining positions\n")
if(!is.null(qtl)) {
rqtl <- refineqtl(cross, pheno.col=pheno.col, qtl=qtl,
covar=covar, formula=formula, method=method,
verbose=verbose.scan, incl.markers=incl.markers,
keeplodprofile=FALSE, forceXcovar=forceXcovar)
if(any(rqtl$pos != qtl$pos)) { # updated positions
if(verbose) cat(" --- Moved a bit\n")
qtl <- rqtl
fit <- fitqtl(cross, pheno.col, qtl, covar=covar, formula=formula,
method=method, model=model, dropone=FALSE, get.ests=FALSE,
run.checks=FALSE, tol=tol, maxit=maxit, forceXcovar=forceXcovar)
lod <- fit$result.full[1,4] - lod0
if(require.fullrank && attr(fit, "matrix.rank") < attr(fit, "matrix.ncol")) lod <- 0
curplod <- calc.plod(lod, countqtlterms(formula, ignore.covar=TRUE),
penalties=penalties)
attr(qtl, "pLOD") <- curplod
}
}
}
if(curplod > curbestplod) {
if(verbose)
cat("** new best ** (pLOD increased by ", round(curplod - curbestplod, 4),
")\n", sep="")
curbestplod <- curplod
curbest <- qtl
}
if(keeptrace) {
temp <- list(chr=qtl$chr, pos=qtl$pos)
attr(temp, "formula") <- deparseQTLformula(formula)
attr(temp, "pLOD") <- curplod
class(temp) <- c("compactqtl", "list")
temp <- list(temp)
names(temp) <- i
thetrace <- c(thetrace, temp)
}
}
# re-form the qtl
if(!is.null(curbest)) {
chr <- curbest$chr
pos <- curbest$pos
o <- order(factor(chr, levels=names(cross$geno)), pos)
qtl <- makeqtl(cross, chr[o], pos[o], what=qtlmethod)
# need to redo numbering in formula
formula <- as.formula(attr(curbest, "formula"))
if(length(chr) > 1) {
n.qtl <- length(chr)
for(i in 1:n.qtl)
formula <- reviseqtlnuminformula(formula, i, n.qtl+i)
for(i in 1:n.qtl)
formula <- reviseqtlnuminformula(formula, n.qtl+o[i], i)
}
if(keeplodprofile) {
if(verbose) cat(" ---One last pass through refineqtl\n")
qtl <- refineqtl(cross, pheno.col=pheno.col, qtl=qtl,
covar=covar, formula=formula, method=method,
verbose=verbose.scan, incl.markers=incl.markers,
keeplodprofile=TRUE, forceXcovar=forceXcovar)
}
attr(qtl, "formula") <- deparseQTLformula(formula)
attr(qtl, "pLOD") <- attr(curbest, "pLOD")
curbest <- qtl
}
else {
curbest <- numeric(0)
class(curbest) <- "qtl"
attr(curbest,"pLOD") <- 0
}
if(keeptrace)
attr(curbest, "trace") <- thetrace
attr(curbest, "formula") <- deparseQTLformula(attr(curbest, "formula"), TRUE)
attr(curbest, "penalties") <- penalties
curbest
}
######################################################################
# check initial qtl model for appropriateness
######################################################################
checkStepwiseqtlStart <-
function(qtl, formula, covar=NULL)
{
if(is.character(formula)) formula <- as.formula(formula)
formula <- checkformula(formula, qtl$altname, colnames(covar))
theterms <- attr(terms(formula), "factors")[-1,,drop=FALSE]
rn <- rownames(theterms)
# make sure that all covariates in covar exist in the formula
if(!is.null(covar)) {
covarnam <- colnames(covar)
m <- is.na(match(covarnam, rn))
if(any(m)) {
toadd <- covarnam[m]
warning("Adding ", paste(toadd, collapse="+"), " to formula")
formula <- as.formula(paste(deparseQTLformula(formula), "+", paste(toadd, collapse="+"), sep=""))
theterms <- attr(terms(formula), "factors")[-1,,drop=FALSE]
rn <- rownames(theterms)
}
# make sure there are no QTL:covariate interactions
theqtl <- grep("^Q[0-9]+$", rn)
thecovar <- seq(along=rn)[-theqtl]
if(any(apply(theterms[thecovar,,drop=FALSE], 1, sum)>1))
stop("We can't yet handle QTL:covariate or covariate:covariate interactions")
}
# make sure that any QTL in formula exist in object
theqtl <- grep("^Q[0-9]+$", rn)
thecovar <- seq(along=rn)[-theqtl]
qtlindex <- as.numeric(substr(rn[theqtl], 2, nchar(rn[theqtl])))
wh <- qtlindex < 0 | qtlindex > length(qtl$chr)
if(any(wh))
stop("QTL ", paste(rn[theqtl][wh], collapse=" "), " not in qtl object")
# make sure that there are not any extraneous terms
if(length(thecovar) > 0) {
if(is.null(covar))
stop("Extraneous terms in formula: ", paste(rn[thecovar], collapse=" "))
else {
wh <- is.na(match(rn[thecovar], colnames(covar)))
if(any(wh))
stop("Extraneous terms in formula: ", paste(rn[thecovar][wh], collapse=" "))
}
}
# if any QTL not referred to in formula, drop them from the QTL object
todrop <- seq(along=qtl$chr)[-qtlindex]
if(length(todrop) > 0) {
oldnum <- seq(along=qtl$chr)[-todrop]
newnum <- order(oldnum)
formula <- reviseqtlnuminformula(formula, oldnum, newnum)
qtl <- dropfromqtl(qtl, todrop)
}
return(list(qtl=qtl, formula=as.formula(formula)))
}
######################################################################
# penalized LOD score
######################################################################
calc.plod <-
function(lod, nterms, type=c("f2","bc"), penalties) {
nterms <- nterms[1:3]
if(any(penalties==Inf & nterms > 0)) return(-Inf)
as.numeric(lod - sum((nterms*penalties)[nterms > 0]))
}
######################################################################
# count terms in a model, for use by plod
######################################################################
countqtlterms <-
function(formula, ignore.covar=TRUE)
{
if(is.character(formula)) formula <- as.formula(formula)
factors <- attr(terms(formula), "factors")[-1,,drop=FALSE]
if(any(factors > 1)) {
warning("some formula terms > 1; may be a problem with the formula:\n ", deparseQTLformula(formula))
factors[factors > 1] <- 1
}
nterm <- apply(factors, 2, sum)
if(any(nterm>2))
stop("Can't deal with higher-order interactions\n")
# need to check for QTL x covariate interactions in here!
if(ignore.covar) {
cn <- colnames(factors)
wh <- c(grep("^[Qq][0-9]+$", cn),
grep("^[Qq][0-9]+:[Qq][0-9]+$", cn))
rn <- rownames(factors)
wh2 <- c(grep("^[Qq][0-9]+$", rn),
grep("^[Qq][0-9]+:[Qq][0-9]+$", rn))
factors <- factors[wh2,wh, drop=FALSE]
}
nterm <- apply(factors, 2, sum)
nmain <- sum(nterm==1)
if(all(nterm==1))
return(c(main=nmain, intH=0, intL=0, inttot=0))
n.int <- sum(nterm==2)
if(n.int <=1) # 0 or 1 interactions, so no need to figure them out
return(c(main=nmain, intH=0, intL=n.int, inttot=n.int))
factors <- factors[,nterm==2, drop=FALSE]
wh <- apply(factors, 2, function(a) which(a==1))
u <- sort(unique(as.numeric(wh)))
grp <- rep(NA, length(u))
names(grp) <- u
ngrp <- 0
nint <- NULL
for(i in 1:ncol(wh)) {
thegrp <- grp[as.character(wh[,i])]
if(all(!is.na(thegrp))) {
nint[as.character(thegrp[1])] <-
sum(nint[unique(as.character(thegrp))]) + 1
grp[grp==thegrp[1] | grp==thegrp[2]] <- thegrp[1]
}
else if(any(!is.na(thegrp))) {
grp[as.character(wh[,i])] <- thegrp[!is.na(thegrp)]
nint[as.character(thegrp[!is.na(thegrp)])] <-
nint[as.character(thegrp[!is.na(thegrp)])] + 1
}
else {
ngrp <- ngrp+1
grp[as.character(wh[,i])] <- ngrp
nint[as.character(ngrp)] <- 1
}
}
nint <- nint[as.character(unique(grp))]
nL <- sum(nint>0)
nH <- sum(nint)-nL
c(main=nmain, intH=nH, intL=nL, inttot=n.int)
}
######################################################################
# calculate penalties for pLOD using scantwo permutation results.
######################################################################
calc.penalties <-
function(perms, alpha=0.05, lodcolumn)
{
if(missing(perms) || !("scantwoperm" %in% class(perms)))
stop("You must include permutation results from scantwo.")
if("AA" %in% names(perms)) { # X-chr-specific penalties
if(missing(lodcolumn)) lodcolumn <- NULL
return(calc.penalties.X(perms, alpha, lodcolumn))
}
if(missing(lodcolumn) || is.null(lodcolumn)) {
if(is.matrix(perms[[1]]) && ncol(perms[[1]]) > 1)
lodcolumn <- 1:ncol(perms[[1]])
else lodcolumn <- 1
}
if(length(lodcolumn)>1) {
result <- NULL
for(i in seq(along=lodcolumn)) {
temp <- calc.penalties(perms, alpha, lodcolumn[i])
result <- rbind(result, temp)
}
dimnames(result) <- list(colnames(perms[[1]])[lodcolumn], names(temp))
return(result)
}
if(is.matrix(perms[[1]]) && ncol(perms[[1]]) >1) {
if(lodcolumn < 1 || lodcolumn > ncol(perms[[1]]))
stop("lodcolumn misspecified")
for(i in seq(along=perms))
perms[[i]] <- perms[[i]][,lodcolumn,drop=FALSE]
}
qu <- summary(perms, alpha=alpha)
if(!("one" %in% names(qu)))
stop("You need to re-run scantwo permutations with R/qtl version >= 1.09.")
if(length(alpha)>1) {
penalties <- cbind(qu[["one"]], qu[["int"]], qu[["fv1"]]-qu[["one"]])
colnames(penalties) <- c("main","heavy", "light")
}
else {
penalties <- c(qu[["one"]], qu[["int"]], qu[["fv1"]]-qu[["one"]])
names(penalties) <- c("main","heavy", "light")
}
penalties
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.