R/stepwiseqtl.int.R

#' @title stepwise qtl analysis forcing an interactive covariate
#'
#' @description
#' \code{stepwiseqtl.int}  see qtl::stepwiseqtl for details
#' @import qtl
#' @export
stepwiseqtl.int <-
  function(cross, chr, pheno.col=1, qtl, formula, max.qtl=10, covar=NULL,
           method=c("imp", "hk"), model=c("normal", "binary"),
           incl.markers=TRUE, refine.locations=TRUE,
           additive.only=FALSE, scan.pairs=FALSE, penalties,
           keeplodprofile=TRUE, keeptrace=FALSE, verbose=TRUE,
           tol=1e-4, maxit=1000, require.fullrank=FALSE)
  {
    if(!("cross" %in% class(cross)))
      stop("Input should have class \"cross\".")

    if(!missing(chr)) cross <- subset(cross, chr)
    if(missing(qtl)) qtl <- NULL
    if(missing(formula)) formula <- NULL

    method <- match.arg(method)
    model <- match.arg(model)

    # force covar to be a data frame
    if(!is.null(covar) && !is.data.frame(covar)) {
      if(is.matrix(covar) && is.numeric(covar))
        covar <- as.data.frame(covar, stringsAsFactors=TRUE)
      else stop("covar should be a data.frame")
    }

    if(!missing(penalties)) {
      if(is.matrix(penalties)) {
        penalties <- penalties[1,]
        warning("penalties should be a vector; only the first row will be used")
      }
      if(length(penalties)==6) { # X-chr-specific penalties
        chrtype <- vapply(cross$geno, class, "")
        if(!all(chrtype=="A")) {
          if(scan.pairs)
            warning("scan.pairs=TRUE not implemented X-chr specific penalties; ignored.")
          return(stepwiseqtlX(cross, chrnames(cross), pheno.col=pheno.col, qtl=qtl,
                              formula=formula, max.qtl=max.qtl, k_f=3, stop.rule=0,
                              covar=covar, method=method, model=model, incl.markers=incl.markers,
                              refine.locations=refine.locations, additive.only=additive.only,
                              penalties=penalties, keeplodprofile=keeplodprofile, keeptrace=keeptrace,
                              verbose=verbose, tol=tol, maxit=maxit, require.fullrank=require.fullrank))
        }
        penalties <- penalties[c(1,3,4)] # just the autosomal penalties
      }
    }

    if(LikePheVector(pheno.col, nind(cross), nphe(cross))) {
      cross$pheno <- cbind(pheno.col, cross$pheno)
      pheno.col <- 1
    }

    chrtype <- sapply(cross$geno, class)
    if(any(chrtype=="X")) {
      Xadjustment <- scanoneXnull(class(cross)[1], getsex(cross), attributes(cross))
      forceXcovar <- Xadjustment$adjustX
      Xcovar <- Xadjustment$sexpgmcovar
    }
    else forceXcovar <- FALSE

    if(!is.null(qtl)) { # start f.s. at somewhere other than the null
      if( !("qtl" %in% class(qtl)) )
        stop("The qtl argument must be an object of class \"qtl\".")

      # check that chromosomes were retained, otherwise give error
      m <- is.na(match(qtl$chr, names(cross$geno)))
      if(any(m)) {
        wh <- qtl$chr[m]
        if(length(wh) > 1)
          stop("Chromosomes ", paste(wh, collapse=", "), " (in QTL object) not in cross object.")
        else
          stop("Chromosome ", wh, " (in QTL object) not in cross object.")
      }
      if(is.null(formula)) { # create a formula with all covariates and all QTL add've
        if(!is.null(covar))
          formula <- paste("y ~ ", paste(names(covar), collapse="+"), "+")
        else
          formula <- "y ~ "

        qnames<-paste("Q", 1:length(qtl$chr), sep="")
        formula <- paste(formula, paste(qnames, collapse="+"), "+",
                         paste(paste(qnames, "covar", sep = ":"), collapse = " + "))
      }
      else {
        temp <- checkStepwiseqtlStart(qtl, formula, covar)
        qtl <- temp$qtl
        formula <- temp$formula
      }
      startatnull <- FALSE
    }
    else {
      if(!is.null(formula))
        warning("formula ignored if qtl is not provided.")
      startatnull <- TRUE
    }

    # revise names in qtl object
    if(!startatnull)
      qtl$name <- qtl$altname

    # check that we have the right stuff for the selected method
    if(method=="imp") {
      if(!("draws" %in% names(cross$geno[[1]]))) {
        if("prob" %in% names(cross$geno[[1]])) {
          warning("The cross doesn't contain imputations; using method=\"hk\".")
          method <- "hk"
        }
        else
          stop("You need to first run sim.geno.")
      }
    }
    else {
      if(!("prob" %in% names(cross$geno[[1]]))) {
        if("draws" %in% names(cross$geno[[1]])) {
          warning("The cross doesn't contain QTL genotype probabilities; using method=\"imp\".")
          method <- "imp"
        }
        else
          stop("You need to first run calc.genoprob.")
      }
    }
    if(method=="imp") qtlmethod <- "draws"
    else qtlmethod <- "prob"

    if(!is.null(qtl) && qtl$n.ind != nind(cross)) {
      map <- attr(qtl, "map") # save map
      warning("No. individuals in qtl object doesn't match that in the input cross; re-creating qtl object.")
      if(method=="imp")
        qtl <- makeqtl(cross, qtl$chr, qtl$pos, qtl$name, what="draws")
      else
        qtl <- makeqtl(cross, qtl$chr, qtl$pos, qtl$name, what="prob")
      attr(qtl, "map") <- map
    }

    if(!is.null(qtl) && method=="imp" && dim(qtl$geno)[3] != dim(cross$geno[[1]]$draws)[3])  {
      map <- attr(qtl, "map") # save map
      warning("No. imputations in qtl object doesn't match that in the input cross; re-creating qtl object.")
      qtl <- makeqtl(cross, qtl$chr, qtl$pos, qtl$name, what="draws")
      attr(qtl, "map") <- map
    }

    # check that qtl object matches the method
    if(!startatnull) {
      if(method=="imp" && !("geno" %in% names(qtl)))
        stop("The qtl object doesn't contain imputations; re-run makeqtl with what=\"draws\".")
      else if(method=="hk" && !("prob" %in% names(qtl)))
        stop("The qtl object doesn't contain QTL genotype probabilities; re-run makeqtl with what=\"prob\".")
    }

    # check phenotypes and covariates; drop ind'ls with missing values
    if(length(pheno.col) > 1) {
      pheno.col <- pheno.col[1]
      warning("stepwiseqtl can take just one phenotype; only the first will be used")
    }
    if(is.character(pheno.col)) {
      num <- find.pheno(cross, pheno.col)
      if(is.na(num))
        stop("Couldn't identify phenotype \"", pheno.col, "\"")
      pheno.col <- num
    }
    if(any(pheno.col < 1 | pheno.col > nphe(cross)))
      stop("pheno.col values should be between 1 and the no. phenotypes")
    pheno <- cross$pheno[,pheno.col]
    if(!is.null(covar)) phcovar <- cbind(pheno, covar)
    else phcovar <- as.data.frame(pheno, stringsAsFactors=TRUE)
    hasmissing <- apply(phcovar, 1, function(a) any(is.na(a)))
    if(all(hasmissing))
      stop("All individuals are missing phenotypes or covariates.")
    if(any(hasmissing)) {
      pheno <- pheno[!hasmissing]
      cross <- subset(cross, ind=!hasmissing)
      if(!is.null(covar)) covar <- covar[!hasmissing,,drop=FALSE]

      if(!startatnull) {
        if(method=="imp")
          qtl$geno <- qtl$geno[!hasmissing,,,drop=FALSE]
        else {
          for(i in seq(along=qtl$prob))
            qtl$prob[[i]] <- qtl$prob[[i]][!hasmissing,,drop=FALSE]
        }
        qtl$n.ind <- sum(!hasmissing)
      }
    }

    if(max.qtl < 1)
      stop("Need max.qtl > 0 if we are to scan for qtl")

    if(is.null(covar)) {
      lod0 <- 0
      if(startatnull)
        firstformula <- y~Q1
      else firstformula <- formula
    }
    else {
      lod0 <- length(pheno)/2 * log10(sum((pheno-mean(pheno))^2) / sum(lm(pheno ~ as.matrix(covar))$resid^2))
      if(startatnull)
        firstformula <- as.formula(paste("y~", paste(names(covar), collapse="+"), "+",
                                         "Q1", "+", paste(paste("Q1",names(covar), sep = ":"),collapse = " + ")))
      else firstformula <- formula
    }


    # penalties
    cross.type <- class(cross)[1]
    if(missing(penalties)) {
      if(cross.type=="f2") {
        penalties <-  c(3.52, 4.28, 2.69)
      }
      else if(cross.type=="bc") {
        penalties <-  c(2.69, 2.62, 1.19)
      }
      else
        stop("No default penalties available for cross type ", cross.type)
    }
    else if(length(penalties) != 3) {
      if(length(penalties)==1) {
        if(additive.only)
          penalties <- c(penalties,Inf,Inf)
        else
          stop("You must include a penalty for interaction terms.")
      }
      else {
        if(length(penalties)==2)
          penalties <- penalties[c(1,2,2)]
        else {
          warning("penalties should have length 3")
          penalties <- penalties[1:3]
        }
      }
    }

    if(verbose > 2) verbose.scan <- TRUE
    else verbose.scan <- FALSE

    curbest <- NULL
    curbestplod <- 0

    # initial scan : either 1d or 2d
    if(verbose) cat(" -Initial scan\n")
    if(startatnull) {

      if(forceXcovar) {
        if(is.null(covar)) covar.w.X <- Xcovar
        else covar.w.X <- cbind(covar, Xcovar)
      }
      else covar.w.X <- covar

      if(additive.only || max.qtl == 1 || !scan.pairs) {
        suppressWarnings(out <- scanone(cross, pheno.col=pheno.col, method=method, model=model,
                                        addcovar=covar.w.X))
        lod <- max(out[,3], na.rm=TRUE)
        if(verbose) cat("initial lod: ", lod, "\n")

        curplod <- calc.plod(lod, c(1,0,0), penalties=penalties)
        wh <- which(!is.na(out[,3]) & out[,3]==lod)
        if(length(wh) > 1) wh <- sample(wh, 1)

        qtl <- makeqtl(cross, as.character(out[wh,1]), out[wh,2], "Q1",
                       what=qtlmethod)
        formula <- firstformula
        n.qtl <- 1
      }
      else {
        suppressWarnings(out <- scantwo(cross, pheno.col=pheno.col, method=method, model=model,
                                        incl.markers=incl.markers, addcovar=covar.w.X, verbose=verbose.scan))
        lod <- out$lod

        lod1 <- max(diag(lod), na.rm=TRUE)
        plod1 <- calc.plod(lod1, c(1,0,0), penalties=penalties)
        loda <- max(lod[upper.tri(lod)], na.rm=TRUE)
        ploda <- calc.plod(loda, c(2,0,0),
                           penalties=penalties)
        lodf <- max(lod[lower.tri(lod)], na.rm=TRUE)
        plodf <- calc.plod(lodf, c(2,0,1),
                           penalties=penalties)

        if(plod1 > ploda && plod1 > plodf) {
          wh <- which(!is.na(diag(lod)) & diag(lod) == lod1)
          if(length(wh) > 1) wh <- sample(wh, 1)
          m <- out$map[wh,]
          qtl <- makeqtl(cross, as.character(m[1,1]), m[1,2], "Q1", what=qtlmethod)
          formula <- firstformula
          n.qtl <- 1
          lod <- lod1
          curplod <- plod1
        }
        else if(ploda > plodf) {
          temp <- max(out, what="add")
          if(nrow(temp) > 1)
            temp <- temp[sample(1:nrow(temp),1),]
          qtl <- makeqtl(cross, c(as.character(temp[1,1]), as.character(temp[1,2])),
                         c(temp[1,3], temp[1,4]), c("Q1","Q2"), what=qtlmethod)
          formula <- as.formula(paste(deparseQTLformula(firstformula), "+Q2+", paste(paste("Q2",names(covar), sep = ":"),collapse = " + ")))
          curplod <- ploda
          lod <- loda
          n.qtl <- 2
        }
        else {
          temp <- max(out, what="full")
          if(nrow(temp) > 1)
            temp <- temp[sample(1:nrow(temp),1),]
          qtl <- makeqtl(cross, c(as.character(temp[1,1]), as.character(temp[1,2])),
                         c(temp[1,3], temp[1,4]), c("Q1","Q2"), what=qtlmethod)
          formula <- as.formula(paste(deparseQTLformula(firstformula), "+Q2+Q1:Q2+", paste(paste("Q2",names(covar), sep = ":"),collapse = " + ")))
          curplod <- plodf
          lod <- lodf
          n.qtl <- 2
        }
      }
    } # start at null
    else {
      if(verbose) cat(" ---Starting at a model with", length(qtl$chr), "QTL\n")
      if(refine.locations) {
        if(verbose) cat(" ---Refining positions\n")
        rqtl <- refineqtl(cross, pheno.col=pheno.col, qtl=qtl,
                          covar=covar, formula=formula, method=method,
                          verbose=verbose.scan, incl.markers=incl.markers,
                          keeplodprofile=FALSE, forceXcovar=forceXcovar)
        if(any(rqtl$pos != qtl$pos)) { # updated positions
          if(verbose) cat(" ---  Moved a bit\n")
        }
        qtl <- rqtl
      }
      fit <- fitqtl(cross, pheno.col, qtl, covar=covar, formula=formula,
                    method=method, model=model, dropone=FALSE, get.ests=FALSE,
                    run.checks=FALSE, tol=tol, maxit=maxit, forceXcovar=forceXcovar)
      lod <- fit$result.full[1,4] - lod0
      if(require.fullrank && attr(fit, "matrix.rank") < attr(fit, "matrix.ncol")) lod <- 0
      curplod <- calc.plod(lod, countqtlterms(formula, ignore.covar=TRUE),
                           penalties=penalties)
      attr(qtl, "pLOD") <- curplod
      n.qtl <- length(qtl$chr)
    }

    attr(qtl, "formula") <- deparseQTLformula(formula)
    attr(qtl, "pLOD") <- curplod

    if(curplod > 0) {
      curbest <- qtl
      curbestplod <- curplod

      if(verbose)
        cat("** new best ** (pLOD increased by ", round(curplod, 4), ")\n", sep="")
    }

    if(keeptrace) {
      temp <- list(chr=qtl$chr, pos=qtl$pos)
      attr(temp, "formula") <- deparseQTLformula(formula)
      attr(temp, "pLOD") <- curplod
      class(temp) <- c("compactqtl", "list")
      thetrace <- list("0"=temp)
    }

    if(verbose)
      cat("    no.qtl = ", n.qtl, "  pLOD =", curplod, "  formula:",
          deparseQTLformula(formula), "\n")
    if(verbose > 1)
      cat("         qtl:", paste(qtl$chr, round(qtl$pos,1), sep="@"), "\n")

    # start stepwise search
    i <- 0
    while(n.qtl < max.qtl) {
      i <- i+1

      if(verbose) {
        cat(" -Step", i, "\n")
        cat(" ---Scanning for additive qtl\n")
      }

      out <- addqtl(cross, pheno.col=pheno.col, qtl=qtl, covar=covar,
                    formula=formula, method=method, incl.markers=incl.markers,
                    verbose=verbose.scan, forceXcovar=forceXcovar,
                    require.fullrank=require.fullrank)

      curlod <- max(out[,3], na.rm=TRUE)
      wh <- which(!is.na(out[,3]) & out[,3]==curlod)
      if(length(wh) > 1) wh <- sample(wh,1)
      curqtl <- addtoqtl(cross, qtl, as.character(out[wh,1]), out[wh,2],
                         paste("Q", n.qtl+1, sep=""))
      curformula <- as.formula(paste(deparseQTLformula(formula), "+Q", n.qtl+1,
                                     paste(paste(paste("+Q", n.qtl+1, sep=""),names(covar), sep = ":"),collapse = " + "),
                                     sep=""))


      curlod <- curlod + lod
      curplod <- calc.plod(curlod, countqtlterms(curformula, ignore.covar=TRUE),
                           penalties=penalties)
      if(verbose) cat("        plod =", curplod, "\n")

      curnqtl <- n.qtl+1

      if(!additive.only) {
        for(j in 1:n.qtl) {

          if(verbose)
            cat(" ---Scanning for QTL interacting with Q", j, "\n", sep="")

          thisformula <- as.formula(paste(deparseQTLformula(formula), "+Q", n.qtl+1,
                                          "+Q", j, ":Q", n.qtl+1, sep=""))
          out <- addqtl(cross, pheno.col=pheno.col, qtl=qtl, covar=covar,
                        formula=thisformula, method=method, incl.markers=incl.markers,
                        verbose=verbose.scan, forceXcovar=forceXcovar,
                        require.fullrank=require.fullrank)
          thislod <- max(out[,3], na.rm=TRUE)

          wh <- which(!is.na(out[,3]) & out[,3]==thislod)
          if(length(wh) > 1) wh <- sample(wh,1)
          thisqtl <- addtoqtl(cross, qtl, as.character(out[wh,1]), out[wh,2],
                              paste("Q", n.qtl+1, sep=""))

          thislod <- thislod + lod
          thisplod <- calc.plod(thislod, countqtlterms(thisformula, ignore.covar=TRUE),
                                penalties=penalties)
          if(verbose) cat("        plod =", thisplod, "\n")

          if(thisplod > curplod) {
            curformula <- thisformula
            curplod <- thisplod
            curlod <- thislod
            curqtl <- thisqtl

            curnqtl <- n.qtl+1
          }
        }

        if(n.qtl > 1) {
          if(verbose)
            cat(" ---Look for additional interactions\n")
          temp <- addint(cross, pheno.col, qtl, covar=covar, formula=formula,
                         method=method, qtl.only=TRUE, verbose=verbose.scan,
                         require.fullrank=require.fullrank)
          if(!is.null(temp)) {
            thislod <- max(temp[,3], na.rm=TRUE)
            wh <- which(!is.na(temp[,3]) & temp[,3] == thislod)
            if(length(wh) > 1) wh <- sample(wh, 1)
            thisformula <- as.formula(paste(deparseQTLformula(formula), "+", rownames(temp)[wh]))
            thislod <- thislod + lod
            thisplod <- calc.plod(thislod, countqtlterms(thisformula, ignore.covar=TRUE),
                                  penalties=penalties)
            if(verbose) cat("        plod =", thisplod, "\n")
            if(thisplod > curplod) {
              curformula <- thisformula
              curplod <- thisplod
              curlod <- thislod
              curqtl <- qtl
              curnqtl <- n.qtl
            }
          }
        }

        if(scan.pairs) {
          if(verbose)
            cat(" ---Scan for an additional pair\n")
          out <- addpair(cross, pheno.col=pheno.col, qtl=qtl, covar=covar,
                         formula=formula, method=method, incl.markers=incl.markers,
                         verbose=verbose.scan, forceXcovar=forceXcovar)
          thelod <- out$lod

          loda <- max(thelod[upper.tri(thelod)], na.rm=TRUE)
          ploda <- calc.plod(loda+lod, c(2,0,0,0)+countqtlterms(formula, ignore.covar=TRUE),
                             penalties=penalties)
          lodf <- max(thelod[lower.tri(thelod)], na.rm=TRUE)
          plodf <- calc.plod(lodf+lod, c(2,0,1,1)+countqtlterms(formula, ignore.covar=TRUE),
                             penalties=penalties)

          if(verbose) {
            cat("        ploda =", ploda, "\n")
            cat("        plodf =", plodf, "\n")
          }

          if(ploda > curplod && loda > plodf) {
            temp <- max(out, what="add")
            if(nrow(temp) > 1)
              temp <- temp[sample(1:nrow(temp),1),]
            curqtl <- addtoqtl(cross, qtl, c(as.character(temp[1,1]), as.character(temp[1,2])),
                               c(temp[1,3], temp[1,4]), paste("Q", n.qtl+1:2, sep=""))
            curformula <- as.formula(paste(deparseQTLformula(formula), "+Q", n.qtl+1, "+Q",
                                           n.qtl+2, sep=""))
            curplod <- ploda
            lod <- loda+lod
            curnqtl <- n.qtl+2
          }
          else if(plodf > curplod) {
            temp <- max(out, what="full")
            if(nrow(temp) > 1)
              temp <- temp[sample(1:nrow(temp),1),]

            curqtl <- addtoqtl(cross, qtl, c(as.character(temp[1,1]), as.character(temp[1,2])),
                               c(temp[1,3], temp[1,4]), paste("Q", n.qtl+1:2, sep=""))
            curformula <- as.formula(paste(deparseQTLformula(formula), "+Q", n.qtl+1, "+Q",
                                           n.qtl+2, "+Q", n.qtl+1, ":Q", n.qtl+2,
                                           sep=""))
            curplod <- plodf
            lod <- lodf+lod
            curnqtl <- n.qtl+2
          }
        }

      }

      qtl <- curqtl
      n.qtl <- curnqtl
      attr(qtl, "formula") <- deparseQTLformula(curformula)
      attr(qtl, "pLOD") <- curplod
      formula <- curformula
      lod <- curlod

      if(refine.locations) {
        if(verbose) cat(" ---Refining positions\n")
        rqtl <- refineqtl(cross, pheno.col=pheno.col, qtl=qtl,
                          covar=covar, formula=formula, method=method,
                          verbose=verbose.scan, incl.markers=incl.markers,
                          keeplodprofile=FALSE, forceXcovar=forceXcovar)
        if(any(rqtl$pos != qtl$pos)) { # updated positions
          if(verbose) cat(" ---  Moved a bit\n")
          qtl <- rqtl
          fit <- fitqtl(cross, pheno.col, qtl, covar=covar, formula=formula,
                        method=method, model=model, dropone=FALSE, get.ests=FALSE,
                        run.checks=FALSE, tol=tol, maxit=maxit, forceXcovar=forceXcovar)
          lod <- fit$result.full[1,4] - lod0
          if(require.fullrank && attr(fit, "matrix.rank") < attr(fit, "matrix.ncol")) lod <- 0
          curplod <- calc.plod(lod, countqtlterms(formula, ignore.covar=TRUE),
                               penalties=penalties)
          attr(qtl, "pLOD") <- curplod
        }

      }

      if(verbose)
        cat("    no.qtl = ", n.qtl, "  pLOD =", curplod, "  formula:",
            deparseQTLformula(formula), "\n")
      if(verbose > 1)
        cat("         qtl:", paste(qtl$chr, round(qtl$pos,1), sep="@"), "\n")


      if(curplod > curbestplod) {
        if(verbose)
          cat("** new best ** (pLOD increased by ", round(curplod - curbestplod, 4),
              ")\n", sep="")

        curbest <- qtl
        curbestplod <- curplod
      }

      if(keeptrace) {
        temp <- list(chr=qtl$chr, pos=qtl$pos)
        attr(temp, "formula") <- deparseQTLformula(formula)
        attr(temp, "pLOD") <- curplod
        class(temp) <- c("compactqtl", "list")
        temp <- list(temp)
        names(temp) <- i
        thetrace <- c(thetrace, temp)
      }

      if(n.qtl >= max.qtl) break
    }

    if(verbose) cat(" -Starting backward deletion\n")

    while(n.qtl > 1) {
      i <- i+1
      out <- fitqtl(cross, pheno.col, qtl, covar=covar, formula=formula,
                    method=method, model=model, dropone=TRUE, get.ests=FALSE,
                    run.checks=FALSE, tol=tol, maxit=maxit, forceXcovar=forceXcovar)$result.drop

      formulas <- attr(out, "formulas")
      lods <- attr(out, "lods")

      rn <- rownames(out)
      # ignore things with covariates
      wh <- c(grep("^[Qq][0-9]+$", rn),
              grep("^[Qq][0-9]+:[Qq][0-9]+$", rn))
      out <- out[wh,,drop=FALSE]
      formulas <- formulas[wh]
      lods <- lods[wh]

      # need to calculate penalized LOD scores here
      plod <- rep(NA, length(lods))
      for(modi in seq(along=plod))
        plod[modi] <- calc.plod(lods[modi], countqtlterms(formulas[modi], ignore.covar=TRUE),
                                penalties=penalties)

      maxplod <- max(plod, na.rm=TRUE)

      wh <- which(!is.na(plod) & plod==maxplod)
      if(length(wh) > 1) wh <- sample(wh, 1)

      todrop <- rownames(out)[wh]

      if(verbose) cat(" ---Dropping", todrop, "\n")

      if(length(grep(":", todrop)) > 0) { # dropping an interaction
        theterms <- attr(terms(formula), "factors")
        wh <- colnames(theterms)==todrop
        if(!any(wh)) stop("Confusion about what interation to drop!")
        theterms <- colnames(theterms)[!wh]
        formula <- as.formula(paste("y~", paste(theterms, collapse="+")))
      }
      else {
        numtodrop <- as.numeric(substr(todrop, 2, nchar(todrop)))

        theterms <- attr(terms(formula), "factors")
        cn <- colnames(theterms)
        g <- c(grep(paste("^[Qq]", numtodrop, "$", sep=""), cn),
               grep(paste("^[Qq]", numtodrop, ":", sep=""), cn),
               grep(paste(":[Qq]", numtodrop, "$", sep=""), cn))
        cn <- cn[-g]
        formula <- as.formula(paste("y~", paste(cn, collapse="+")))

        if(n.qtl > numtodrop) {
          for(j in (numtodrop+1):n.qtl)
            formula <- reviseqtlnuminformula(formula, j, j-1)
        }

        qtl <- dropfromqtl(qtl, index=numtodrop)
        qtl$name <- qtl$altname <- paste("Q", 1:qtl$n.qtl, sep="")
        n.qtl <- n.qtl - 1
      }

      # call fitqtl again, just in case
      fit <- fitqtl(cross, pheno.col, qtl, covar=covar, formula=formula,
                    method=method, model=model, dropone=FALSE, get.ests=FALSE,
                    run.checks=FALSE, tol=tol, maxit=maxit, forceXcovar=forceXcovar)
      lod <- fit$result.full[1,4] - lod0
      if(require.fullrank && attr(fit, "matrix.rank") < attr(fit, "matrix.ncol")) lod <- 0

      curplod <- calc.plod(lod, countqtlterms(formula, ignore.covar=TRUE),
                           penalties=penalties)

      if(verbose)
        cat("    no.qtl = ", n.qtl, "  pLOD =", curplod, "  formula:",
            deparseQTLformula(formula), "\n")
      if(verbose > 1)
        cat("         qtl:", paste(qtl$chr, round(qtl$pos,1), sep=":"), "\n")

      attr(qtl, "formula") <- deparseQTLformula(formula)
      attr(qtl, "pLOD") <- curplod

      if(refine.locations) {
        if(verbose) cat(" ---Refining positions\n")
        if(!is.null(qtl)) {
          rqtl <- refineqtl(cross, pheno.col=pheno.col, qtl=qtl,
                            covar=covar, formula=formula, method=method,
                            verbose=verbose.scan, incl.markers=incl.markers,
                            keeplodprofile=FALSE, forceXcovar=forceXcovar)
          if(any(rqtl$pos != qtl$pos)) { # updated positions
            if(verbose) cat(" ---  Moved a bit\n")
            qtl <- rqtl
            fit <- fitqtl(cross, pheno.col, qtl, covar=covar, formula=formula,
                          method=method, model=model, dropone=FALSE, get.ests=FALSE,
                          run.checks=FALSE, tol=tol, maxit=maxit, forceXcovar=forceXcovar)
            lod <- fit$result.full[1,4] - lod0
            if(require.fullrank && attr(fit, "matrix.rank") < attr(fit, "matrix.ncol")) lod <- 0
            curplod <- calc.plod(lod, countqtlterms(formula, ignore.covar=TRUE),
                                 penalties=penalties)
            attr(qtl, "pLOD") <- curplod
          }
        }
      }

      if(curplod > curbestplod) {
        if(verbose)
          cat("** new best ** (pLOD increased by ", round(curplod - curbestplod, 4),
              ")\n", sep="")

        curbestplod <- curplod
        curbest <- qtl
      }

      if(keeptrace) {
        temp <- list(chr=qtl$chr, pos=qtl$pos)
        attr(temp, "formula") <- deparseQTLformula(formula)
        attr(temp, "pLOD") <- curplod
        class(temp) <- c("compactqtl", "list")
        temp <- list(temp)
        names(temp) <- i
        thetrace <- c(thetrace, temp)
      }
    }

    # re-form the qtl
    if(!is.null(curbest)) {
      chr <- curbest$chr
      pos <- curbest$pos
      o <- order(factor(chr, levels=names(cross$geno)), pos)

      qtl <- makeqtl(cross, chr[o], pos[o], what=qtlmethod)

      # need to redo numbering in formula
      formula <- as.formula(attr(curbest, "formula"))

      if(length(chr) > 1) {
        n.qtl <- length(chr)
        for(i in 1:n.qtl)
          formula <- reviseqtlnuminformula(formula, i, n.qtl+i)
        for(i in 1:n.qtl)
          formula <- reviseqtlnuminformula(formula, n.qtl+o[i], i)
      }

      if(keeplodprofile) {
        if(verbose) cat(" ---One last pass through refineqtl\n")
        qtl <- refineqtl(cross, pheno.col=pheno.col, qtl=qtl,
                         covar=covar, formula=formula, method=method,
                         verbose=verbose.scan, incl.markers=incl.markers,
                         keeplodprofile=TRUE, forceXcovar=forceXcovar)
      }
      attr(qtl, "formula") <- deparseQTLformula(formula)
      attr(qtl, "pLOD") <- attr(curbest, "pLOD")
      curbest <- qtl
    }
    else {
      curbest <- numeric(0)
      class(curbest) <- "qtl"
      attr(curbest,"pLOD") <- 0
    }

    if(keeptrace)
      attr(curbest, "trace") <- thetrace

    attr(curbest, "formula") <- deparseQTLformula(attr(curbest, "formula"), TRUE)
    attr(curbest, "penalties") <- penalties

    curbest
  }


######################################################################
# check initial qtl model for appropriateness
######################################################################
checkStepwiseqtlStart <-
  function(qtl, formula, covar=NULL)
  {
    if(is.character(formula)) formula <- as.formula(formula)

    formula <- checkformula(formula, qtl$altname, colnames(covar))
    theterms <- attr(terms(formula), "factors")[-1,,drop=FALSE]
    rn <- rownames(theterms)

    # make sure that all covariates in covar exist in the formula
    if(!is.null(covar)) {
      covarnam <- colnames(covar)
      m <- is.na(match(covarnam, rn))
      if(any(m)) {
        toadd <- covarnam[m]
        warning("Adding ", paste(toadd, collapse="+"), " to formula")
        formula <- as.formula(paste(deparseQTLformula(formula), "+", paste(toadd, collapse="+"), sep=""))
        theterms <- attr(terms(formula), "factors")[-1,,drop=FALSE]
        rn <- rownames(theterms)
      }

      # make sure there are no QTL:covariate interactions
      theqtl <- grep("^Q[0-9]+$", rn)
      thecovar <- seq(along=rn)[-theqtl]

      if(any(apply(theterms[thecovar,,drop=FALSE], 1, sum)>1))
        stop("We can't yet handle QTL:covariate or covariate:covariate interactions")
    }

    # make sure that any QTL in formula exist in object
    theqtl <- grep("^Q[0-9]+$", rn)
    thecovar <- seq(along=rn)[-theqtl]
    qtlindex <- as.numeric(substr(rn[theqtl], 2, nchar(rn[theqtl])))
    wh <- qtlindex < 0 | qtlindex > length(qtl$chr)
    if(any(wh))
      stop("QTL ", paste(rn[theqtl][wh], collapse=" "), " not in qtl object")


    # make sure that there are not any extraneous terms
    if(length(thecovar) > 0) {
      if(is.null(covar))
        stop("Extraneous terms in formula: ", paste(rn[thecovar], collapse=" "))
      else {
        wh <- is.na(match(rn[thecovar], colnames(covar)))
        if(any(wh))
          stop("Extraneous terms in formula: ", paste(rn[thecovar][wh], collapse=" "))
      }
    }

    # if any QTL not referred to in formula, drop them from the QTL object
    todrop <- seq(along=qtl$chr)[-qtlindex]
    if(length(todrop) > 0) {
      oldnum <- seq(along=qtl$chr)[-todrop]
      newnum <- order(oldnum)

      formula <- reviseqtlnuminformula(formula, oldnum, newnum)
      qtl <- dropfromqtl(qtl, todrop)
    }

    return(list(qtl=qtl, formula=as.formula(formula)))
  }


######################################################################
# penalized LOD score
######################################################################
calc.plod <-
  function(lod, nterms, type=c("f2","bc"), penalties) {
    nterms <- nterms[1:3]
    if(any(penalties==Inf & nterms > 0)) return(-Inf)

    as.numeric(lod - sum((nterms*penalties)[nterms > 0]))
  }

######################################################################
# count terms in a model, for use by plod
######################################################################
countqtlterms <-
  function(formula, ignore.covar=TRUE)
  {
    if(is.character(formula)) formula <- as.formula(formula)
    factors <- attr(terms(formula), "factors")[-1,,drop=FALSE]
    if(any(factors > 1))  {
      warning("some formula terms > 1; may be a problem with the formula:\n    ", deparseQTLformula(formula))
      factors[factors > 1] <- 1
    }
    nterm <- apply(factors, 2, sum)

    if(any(nterm>2))
      stop("Can't deal with higher-order interactions\n")

    # need to check for QTL x covariate interactions in here!

    if(ignore.covar) {
      cn <- colnames(factors)
      wh <- c(grep("^[Qq][0-9]+$", cn),
              grep("^[Qq][0-9]+:[Qq][0-9]+$", cn))
      rn <- rownames(factors)
      wh2 <- c(grep("^[Qq][0-9]+$", rn),
               grep("^[Qq][0-9]+:[Qq][0-9]+$", rn))
      factors <- factors[wh2,wh, drop=FALSE]
    }
    nterm <- apply(factors, 2, sum)

    nmain <- sum(nterm==1)

    if(all(nterm==1))
      return(c(main=nmain, intH=0, intL=0, inttot=0))

    n.int <- sum(nterm==2)

    if(n.int <=1) # 0 or 1 interactions, so no need to figure them out
      return(c(main=nmain, intH=0, intL=n.int, inttot=n.int))

    factors <- factors[,nterm==2, drop=FALSE]

    wh <- apply(factors, 2, function(a) which(a==1))

    u <- sort(unique(as.numeric(wh)))
    grp <- rep(NA, length(u))
    names(grp) <- u

    ngrp <- 0
    nint <- NULL

    for(i in 1:ncol(wh)) {
      thegrp <- grp[as.character(wh[,i])]
      if(all(!is.na(thegrp))) {
        nint[as.character(thegrp[1])] <-
          sum(nint[unique(as.character(thegrp))]) + 1
        grp[grp==thegrp[1] | grp==thegrp[2]] <- thegrp[1]
      }
      else if(any(!is.na(thegrp))) {
        grp[as.character(wh[,i])] <- thegrp[!is.na(thegrp)]
        nint[as.character(thegrp[!is.na(thegrp)])] <-
          nint[as.character(thegrp[!is.na(thegrp)])] + 1
      }
      else {
        ngrp <- ngrp+1
        grp[as.character(wh[,i])] <- ngrp
        nint[as.character(ngrp)] <- 1
      }
    }

    nint <- nint[as.character(unique(grp))]
    nL <- sum(nint>0)
    nH <- sum(nint)-nL
    c(main=nmain, intH=nH, intL=nL, inttot=n.int)
  }

######################################################################
# calculate penalties for pLOD using scantwo permutation results.
######################################################################
calc.penalties <-
  function(perms, alpha=0.05, lodcolumn)
  {
    if(missing(perms) || !("scantwoperm" %in% class(perms)))
      stop("You must include permutation results from scantwo.")

    if("AA" %in% names(perms)) { # X-chr-specific penalties
      if(missing(lodcolumn)) lodcolumn <- NULL
      return(calc.penalties.X(perms, alpha, lodcolumn))
    }

    if(missing(lodcolumn) || is.null(lodcolumn)) {
      if(is.matrix(perms[[1]]) && ncol(perms[[1]]) > 1)
        lodcolumn <- 1:ncol(perms[[1]])
      else lodcolumn <- 1
    }

    if(length(lodcolumn)>1) {
      result <- NULL
      for(i in seq(along=lodcolumn)) {
        temp <- calc.penalties(perms, alpha, lodcolumn[i])
        result <- rbind(result, temp)
      }
      dimnames(result) <- list(colnames(perms[[1]])[lodcolumn], names(temp))
      return(result)
    }

    if(is.matrix(perms[[1]]) && ncol(perms[[1]]) >1) {
      if(lodcolumn < 1 || lodcolumn > ncol(perms[[1]]))
        stop("lodcolumn misspecified")
      for(i in seq(along=perms))
        perms[[i]] <- perms[[i]][,lodcolumn,drop=FALSE]
    }

    qu <- summary(perms, alpha=alpha)
    if(!("one" %in% names(qu)))
      stop("You need to re-run scantwo permutations with R/qtl version >= 1.09.")

    if(length(alpha)>1) {
      penalties <- cbind(qu[["one"]], qu[["int"]], qu[["fv1"]]-qu[["one"]])
      colnames(penalties) <- c("main","heavy", "light")
    }
    else {
      penalties <- c(qu[["one"]], qu[["int"]], qu[["fv1"]]-qu[["one"]])
      names(penalties) <- c("main","heavy", "light")
    }
    penalties
  }
jtlovell/qtlTools documentation built on May 20, 2019, 3:14 a.m.