R/effects.R

Defines functions prodsumdelta prodtrans confint.effects summary.effects vcov.effects coef.effects print.effects effects.lvmfit totaleffects.lvmfit totaleffects

Documented in effects.lvmfit totaleffects

##' @export
totaleffects <- function(object,...,value) UseMethod("totaleffects")

##' @export
totaleffects.lvmfit <- function(object,to,...,level=0.95) {
    p <- (1-level)/2
    q <- qnorm(p)
    res <- c()
    if (inherits(to,"formula")) {
        if (substr(deparse(to[3]),1,1)==".") {
            trim <- function(x) sapply(x,function(z) gsub(" ","",z,fixed=TRUE))
            to <- trim(strsplit(deparse(to),"~")[[1]][1])
        } else {
            to <- list(to)
        }
    }
    if (is.null(list(...)$from) & is.character(to)[1]) {
        to <- lapply(paste(to,setdiff(vars(object),to),sep="~"),FUN=as.formula)
    }
    ef <- function(tt) {
        f <- effects(object,tt,...)
        rbind(with(f$totalef,c(est,sd,est/sd,2*(pnorm(abs(est/sd),lower.tail=FALSE)),est+q*sd,est-q*sd)))
    }
    if (is.list(to)) {
        for (tt in to) {
            res <- rbind(res,ef(tt))
        }
    }
    else
        res <- ef(to)
    colnames(res) <- c("Estimate","Std.Err","z value","Pr(>|z|)",
                       paste0(c(1-p,p)*100,"%"))
    rownames(res) <- to
    res
}

##' @export
effects.lvmfit <- function(object,to,from,...) {
    if (missing(to)) {
        return(summary(object))
    }
    P <- path(object,to=to,from=from,...)
    if (is.null(P$path)) {
        if (inherits(to,"formula")) {
            f <- extractvar(to)
            to <- f$y; from <- f$x
        }
    } else {
        from <- P$path[[1]][1]
        to <- tail(P$path[[1]],1)
    }
    cc <- coef(object,type=9,labels=FALSE) ## All parameters (fixed and variable)
    cc0 <- cbind(coef(object)) ## Estimated parameters
    i1 <- na.omit(match(rownames(cc),rownames(cc0)))
    idx.cc0 <-  which(rownames(cc)%in%rownames(cc0)); ## Position of estimated parameters among all parameters
    S <- matrix(0,nrow(cc),nrow(cc)); rownames(S) <- colnames(S) <- rownames(cc)
    V <- object$vcov
    npar.mean <- index(object)$npar.mean
    S[idx.cc0,idx.cc0] <- V[i1,i1] ## "Covariance matrix" of all parameters

    cclab <- rownames(coef(object,type=9,labels=TRUE)) ## Identify equivalence constraints
    cctab <- table(cclab)
    equiv <- which(cctab>1)
    for (i in seq_len(length(equiv))) {
        orgpos <- which(cclab==(names(equiv)[i]))
        pos <- orgpos[-1]
        for (p in pos)
            S[p,-orgpos[1]] <- S[-orgpos[1],p] <- S[orgpos[1],-p]
    }

    idx.orig <- unique(unlist(P$idx))
    coefs.all <- cc[idx.orig]

    S.all <- S[idx.orig,idx.orig]
    idx.all <- numberdup(unlist(P$idx))
    pos <- 1; idx.list <- P$idx; for (i in seq_len(length(idx.list))) {
                                     K <- length(idx.list[[i]])
                                     idx.list[[i]] <- idx.all[pos:(pos+K-1)]; pos <- pos+K
                                 }
    margef <- list()
    if (length(coefs.all)==1 && is.na(coefs.all)) {
        totalef <- list(est=0,sd=0)
        margef <- c(margef,list(est=0,sd=NA))
    } else {
        totalef <- prodsumdelta(coefs.all, idx.list, S.all,...)
        for (i in seq_len(length(idx.list))) {
            margef <- c(margef, list(prodsumdelta(coefs.all, idx.list[i], S.all,...)))
        }
    }

    directidx <- which(lapply(P$path,length)==2)

    inef.list <- idx.list
    if (length(directidx)==0) {
        directef <- list(est=0, sd=NA)
    } else {
        inef.list <- inef.list[-directidx]
        directef <- margef[[directidx]]
    }
    if (length(inef.list)==0) {
        totalinef <- list(est=0,sd=NA,grad=NA,hess=NA)
    } else {
        totalinef <- prodsumdelta(coefs.all, inef.list, S.all,...)
    }

    nn <- c("total","direct","indirect")
    for (i in seq_len(length(margef))) {
        if (length(P$path[[i]])>2) {
            nn <- c(nn,paste(rev(P$path[[i]]),collapse=lava.options()$symbol[1]))
        }
    }
    b <- c(totalef$est,directef$est,totalinef$est,totalinef$b)
    names(b) <- nn
    D <- t(cbind(totalef$grad,directef$grad,totalinef$grad,totalinef$D))
    V <- D%*%S.all%*%t(D)
    val <- list(coef=b, vcov=V, grad=D, paths=P$path, totalef=totalef, directef=directef, totalinef=totalinef, margef=margef, from=from, to=to)
    class(val) <- "effects"
    val
}

##' @export
print.effects <- function(x,digits=4,...) {
    s <- summary(x,...)
    print(s$coef,digits=digits,...)
    cat("\n")
    print(s$medprop$coefmat[,c(1,3,4),drop=FALSE],digits=digits,...)
    return(invisible(x))
}

##' @export
coef.effects <- function(object,...) {
    object$coef
}

##' @export
vcov.effects <- function(object,...) {
    object$vcov
}

##' @export
summary.effects <- function(object,...) {
    totalef <- with(object$totalef, cbind(est,sd[1]))
    directef <- with(object$directef, cbind(est,sd[1]))
    totindirectef <- with(object$totalinef, cbind(est,sd[1]))
    rownames(totalef) <- "Total"
    rownames(directef) <- "Direct"
    rownames(totindirectef) <- "Indirect"
    nn <- indirectef <- c()
    K <- seq_len(length(object$margef))
    for (i in K) {
        if (length(object$paths[[i]])>2) {
            nn <- c(nn,paste(rev(object$paths[[i]]),collapse=lava.options()$symbol[1]))
            indirectef <- rbind(indirectef, with(object$margef[[i]], c(est,sd)))
        }
    }; rownames(indirectef) <- nn
    mycoef <- rbind(totalef,directef,totindirectef,indirectef)
    mycoef <- cbind(mycoef,mycoef[,1]/mycoef[,2])
    mycoef <- cbind(mycoef,2*(pnorm(abs(mycoef[,3]),lower.tail=FALSE)))
    colnames(mycoef) <- c("Estimate","Std.Err","z value","Pr(>|z|)")
    medprop <- NULL
    if (totindirectef[1]!=0) {
        if (abs(coef(object)[2])<1e-12) {
            medprop <- estimate(NULL,coef=c("Mediation proportion"=1),vcov=matrix(NA))
        } else {
            medprop <- estimate(object, function(x) list("Mediation proportion"=1-x[2]/x[1]))
            ##medprop <- estimate(object, function(x) list("Mediation proportion"=logit(x[3]/x[1])),back.transform=expit)
        }
    }
    list(coef=mycoef,medprop=medprop)
}


##' @export
confint.effects <- function(object,parm,level=0.95,...) {
    mycoef <- summary(object)$coef
    p <- 1-(1-level)/2
    res <- mycoef[,1] +  + qnorm(p)*cbind(-1,1)%x%mycoef[,2]
    colnames(res) <- paste0(c(1-p,p)*100,"%")
    rownames(res) <- rownames(mycoef)
    res
}


prodtrans <- function(betas) {
    k <- length(betas)
    res <- prod(betas)
    nabla <- numeric(k)
    for (i in seq_len(k))
        nabla[i] <- prod(betas[-i])

    H <- matrix(0,k,k)
    if (k>1)
        for (i in seq_len(k-1))
            for (j in (i+1):k)
                H[j,i] <- H[i,j] <- prod(c(1,betas[-c(i,j)]))
    attr(res,"gradient") <- nabla
    attr(res,"hessian") <- H
    return(res)
}
prodsumdelta <- function(betas,prodidx,S,order=1) { ## Delta-method
    k <- length(prodidx)
    p <- length(betas)
    if (p==1) {
        return(list(est=betas, sd=sqrt(S), grad=0, beta=betas, D=0, hess=0))
    }
    val <- 0; grad <- numeric(p)
    D <- matrix(0,nrow=p,ncol=k)
    beta <- numeric(k)
    H <- matrix(0,p,p)
    for (i in seq_len(k)) {
        ii <- prodidx[[i]]
        myterm <- prodtrans(betas[ii]);
        if (order>1) {
            H0 <- attributes(myterm)$hessian
            Sigma <- S[ii,ii]
            print(sum(diag(Sigma%*%H0))/2)
            val <- val + (myterm + sum(diag(Sigma%*%H0))/2)
        } else {
            val <- val + myterm
            beta[i] <- myterm
        }
        D[ii,i] <- attributes(myterm)$gradient
        grad[ii] <- grad[ii] + attributes(myterm)$gradient
    }; grad <- matrix(grad,ncol=1)
    return(list(est=val, sd=sqrt(t(grad)%*%S%*%grad), grad=grad, b=beta, D=D, hess=H))
}
kkholst/lava documentation built on Sept. 6, 2021, 11:36 p.m.