R/logLik.R

Defines functions logLik.multigroupfit logLik.multigroup logLik.lvm.missing logLik.lvmfit gaussian_logLik.lvm logLik.lvm

Documented in gaussian_logLik.lvm logLik.lvmfit

###{{{ logLik.lvm

##' @export
logLik.lvm <- function(object,p,data,model="gaussian",indiv=FALSE,S,mu,n,debug=FALSE,weights=NULL,data2=NULL,...) {
    cl <- match.call()
    xfix <- colnames(data)[(colnames(data)%in%parlabels(object,exo=TRUE))]

    constr <- lapply(constrain(object), function(z)(attributes(z)$args))
    xconstrain <- intersect(unlist(constr), manifest(object))
    xconstrainM <- TRUE
    if (length(xconstrain)>0) {
        constrainM <- names(constr)%in%unlist(object$mean)
        for (i in seq_len(length(constr))) {
            if (!constrainM[i]) {
                if (any(constr[[i]]%in%xconstrain)) xconstrainM <- FALSE
            }
        }
    }

    Debug(xfix,debug)
    if (missing(n)) {
        n <- nrow(data)
        if (is.null(n)) n <- data$n
    }
    lname <- paste0(model,"_logLik.lvm")
    logLikFun <- get(lname)


    if (length(xfix)>0 | (length(xconstrain)>0 & !xconstrainM & !lava.options()$test & model!="gaussian")) { ##### Random slopes!
        x0 <- object
        if (length(xfix)>0) {
            Debug("random slopes...",debug)
            nrow <- length(vars(object))
            xpos <- lapply(xfix,function(y) which(regfix(object)$labels==y))
            colpos <- lapply(xpos, function(y) ceiling(y/nrow))
            rowpos <- lapply(xpos, function(y) (y-1)%%nrow+1)
            myfix <- list(var=xfix, col=colpos, row=rowpos)
            for (i in seq_along(myfix$var))
                for (j in seq_along(myfix$col[[i]])) {
                    regfix(x0, from=vars(x0)[myfix$row[[i]][j]],to=vars(x0)[myfix$col[[i]][j]]) <-
                        data[1,myfix$var[[i]]]
                }
            index(x0) <- reindex(x0,zeroones=TRUE,deriv=TRUE)
        }
        myfun <- function(ii) {
            if (length(xfix)>0)
                for (i in seq_along(myfix$var)) {
                    index(x0)$A[cbind(myfix$row[[i]],myfix$col[[i]])] <- data[ii,myfix$var[[i]]]
                }
            return(logLikFun(x0,data=data[ii,,drop=FALSE], p=p,weights=weights[ii,,drop=FALSE],data2=data2[ii,,drop=FALSE],
                             model=model,debug=debug,indiv=indiv,...))
        }
        loglik <- sapply(seq_len(nrow(data)),myfun)
        if (!indiv) {
            loglik <- sum(loglik)
            n <- nrow(data)
            attr(loglik, "nall") <- n
            attr(loglik, "nobs") <- n
            attr(loglik, "df") <- length(p)
            class(loglik) <- "logLik"
        }
        return(loglik)
    }

    if (xconstrainM) {
        xconstrain <- c()
        for (i in seq_len(length(constrain(object)))) {
            z <- constrain(object)[[i]]
            xx <- intersect(attributes(z)$args,manifest(object))
            if (length(xx)>0) {
                warg <- setdiff(attributes(z)$args,xx)
                wargidx <- which(attributes(z)$args%in%warg)
                exoidx <- which(attributes(z)$args%in%xx)
                parname <- names(constrain(object))[i]
                y <- names(which(unlist(lapply(intercept(object),function(x) x==parname))))
                el <- list(i,y,parname,xx,exoidx,warg,wargidx,z)
                names(el) <- c("idx","endo","parname","exo","exoidx","warg","wargidx","func")
                xconstrain <- c(xconstrain,list(el))
            }
        }
        if (length(xconstrain)>0) {
            yconstrain <- unlist(lapply(xconstrain,function(x) x$endo))
            iconstrain <- unlist(lapply(xconstrain,function(x) x$idx))

            Mu <- matrix(0,nrow(data),length(vars(object))); colnames(Mu) <- vars(object)
            M <- modelVar(object,p=p,data=data)
            M$parval <- c(M$parval,  object$mean[unlist(lapply(object$mean,is.numeric))])
            for (i in seq_len(length(xconstrain))) {
                pp <- unlist(M$parval[xconstrain[[i]]$warg]);
                myidx <- with(xconstrain[[i]],order(c(wargidx,exoidx)))
                mu <- with(xconstrain[[i]],
                          apply(data[,exo,drop=FALSE],1,
                                function(x) {
                                    func(unlist(c(pp,x))[myidx])
                                }))
                Mu[,xconstrain[[i]]$endo] <- mu
            }
            offsets <- Mu%*%t(M$IAi)[,endogenous(object),drop=FALSE]
            object$constrain[iconstrain] <- NULL
            object$mean[yconstrain] <- 0
            loglik <- do.call(lname, c(list(object=object,p=p,data=data,indiv=indiv,weights=weights,data2=data2,offset=offsets),list(...)))
        } else {
            cl[[1]] <- logLikFun
            loglik <- eval.parent(cl)
        }
    } else {
        loglik <- 0
        if (length(xconstrain)>0 && NROW(data)>1) {
            for (ii in seq(nrow(data))) {
                cl$data <- data[ii,]
                cl$weights <- weights[ii,]
                cl$data2 <- data2[ii,]
                loglik <- loglik+eval.parent(cl)
            }
        } else {
            cl[[1]] <- logLikFun
            loglik <- eval.parent(cl)
        }
    }

    if (is.null(attr(loglik,"nall")))
        attr(loglik, "nall") <- n
    if (is.null(attr(loglik,"nobs")))
        attr(loglik, "nobs") <- n##-length(p)
    if (is.null(attr(loglik,"df")))
        attr(loglik, "df") <- length(p)
    class(loglik) <- "logLik"
    return(loglik)
}

###}}}

###{{{ gaussian_loglik

##' @export
gaussian_logLik.lvm <- function(object,p,data,
                         type=c("cond","sim","exo","sat","cond2"),
                         weights=NULL, indiv=FALSE, S, mu, n, offset=NULL, debug=FALSE, meanstructure=TRUE,...) {
    exo.idx <- with(index(object), exo.obsidx)
    endo.idx <- with(index(object), endo.obsidx)
    if (type[1]=="exo") {
        if (length(exo.idx)==0 || any(is.na(exo.idx)))
            return(0)
    }

    cl <- match.call()
    if (type[1]=="cond") {
        cl$type <- "sim"
        L0 <- eval.parent(cl)
        cl$type <- "exo"
        L1 <- eval.parent(cl)
        loglik <- L0-L1
        return(loglik)
    }

    if (missing(n)) {
        if (is.vector(data)) n <- 1
        else n <- nrow(data)
    }
    k <- length(index(object)$manifest)

    if (!is.null(offset) && type[1]!="exo") {
        data[,colnames(offset)] <- data[,colnames(offset)]-offset
    }

    if (type[1]=="sat") {
        if (missing(S)) {
            d0 <- procdata.lvm(object,data=data)
            S <- d0$S; mu <- d0$mu; n <- d0$n

        }
        if (missing(p)) p <- rep(1,length(coef(object)))
        L1 <- logLik(object,p,data,type="exo",meanstructure=meanstructure)
        ##    Sigma <- (n-1)/n*S ## ML = 1/n * sum((xi-Ex)^2)
        Sigma <- S
        loglik <- -(n*k)/2*log(2*base::pi) -n/2*(log(det(Sigma)) + k) - L1
        P <- length(endo.idx)
        k <- length(exo.idx)
        npar <- P*(1+(P-1)/2)
        if (meanstructure) npar <- npar+ (P*k + P)
        attr(loglik, "nall") <- n
        attr(loglik, "nobs") <- n
        attr(loglik, "df") <- npar
        class(loglik) <- "logLik"
        return(loglik)
    }
    myidx <- switch(type[1],
                    sim =  seq_along(index(object)$manifest),
                    cond = { endo.idx },
                    cond2 = { endo.idx },
                    exo =  { exo.idx } )

    mom <- moments(object, p, conditional=(type[1]=="cond2"), data=data)

    if (!lava.options()$allow.negative.variance && any(diag(mom$P)<0)) return(NaN)

    C <- mom$C
    xi <- mom$xi
    if (type[1]=="exo") {
        C <- C[exo.idx,exo.idx,drop=FALSE]
        xi <- xi[exo.idx,drop=FALSE]
    }
    Debug(list("C=",C),debug)
    k <- nrow(C)

    iC <- Inverse(C,det=TRUE, symmetric = TRUE)
    detC <- attributes(iC)$det

    if (!is.null(weights)) {
        weights <- cbind(weights)
        K <- length(exo.idx)+length(endo.idx)
        if (ncol(weights)!=1 & ncol(weights)!=K) {
            w.temp <- weights
            weights <- matrix(1,nrow=nrow(weights),ncol=K)
            weights[,endo.idx] <- w.temp
        }
        if (type=="exo")
            weights <- NULL
    }

    notdatalist <- (!is.list(data) | is.data.frame(data))
    if (missing(n))
        if (!missing(data)) n <- NROW(data)
    if (!missing(n))
        if (notdatalist & (n<2 | indiv | !is.null(weights))) {
            if (n==1)
                data <- rbind(data)
            res <- numeric(n)
            data <- data[,index(object)$manifest,drop=FALSE]
            loglik <- 0;
            for (i in seq_len(n)) {
                ti <- as.numeric(data[i,myidx])
                if (meanstructure) {
                    ti <- cbind(ti-as.numeric(xi))
                }
                if (!is.null(weights)) {
                    W <- diag(weights[i,],nrow=length(weights[i,]))
                    val <- -k/2*log(2*base::pi) -1/2*log(detC) - 1/2*(t(ti)%*%W)%*%iC%*%(ti)
                } else {
                    val <- -k/2*log(2*base::pi) -1/2*log(detC) - 1/2*t(ti)%*%iC%*%(ti)
                }
                if (indiv)
                    res[i] <- val
                loglik <- loglik + val
            }
            if (indiv)
                return(res)
        } else {
            if (missing(S)) {
                d0 <- procdata.lvm(object,data=data)
                S <- d0$S; mu <- d0$mu; n <- d0$n
            }
            S <- S[myidx,myidx,drop=FALSE]
            mu <- mu[myidx,drop=FALSE]
            T <- S
            if (meanstructure) {
                W <- crossprod(rbind(mu-xi))
                T <- S+W
            }
            loglik <- -(n*k)/2*log(2*base::pi) -n/2*(log(detC) + tr(T%*%iC))
        }
    return(loglik)
}

###}}}

###{{{ logLik.lvmfit

##' @export
logLik.lvmfit <- function(object,
                   p=coef(object),
                   data=model.frame(object),
                   model=object$estimator,
                   weights=Weights(object),
                   data2=object$data$data2,
                   ...) {

    logLikFun <- paste0(model,"_logLik.lvm")
    if (!exists(logLikFun)) {
        model <- "gaussian"
    }
    l <- logLik.lvm(object$model0,p,data,model=model,weights=weights,
                    data2=data2,
                    ...)
    return(l)
}

###}}} logLik.lvmfit

###{{{ logLik.lvm.missing

##' @export
logLik.lvm.missing <- function(object,
                        p=pars(object), model=object$estimator,
                        weights=Weights(object$estimate),
                        ...) {
    logLik(object$estimate$model0, p=p, model=model, weights=weights, ...)
}

###}}}

###{{{ logLik.multigroup

##' @export
logLik.multigroup <- function(object,p,data=object$data,weights=NULL,type=c("cond","sim","exo","sat"),...) {
    res <- procrandomslope(object)
    pp <- with(res, modelPar(model,p)$p)

    if (type[1]=="sat") {
        n <- 0
        df <- 0
        loglik <- 0
        for (i in seq_len(object$ngroup)) {
            m <- Model(object)[[i]]
            L <- logLik(m,p=pp[[i]],data=object$data[[i]],type="sat")
            df <- df + attributes(L)$df
            loglik <- loglik + L
            n <- n + object$samplestat[[i]]$n
        }
        attr(loglik, "nall") <- n
        attr(loglik, "nobs") <- n##-df
        attr(loglik, "df") <- df
        class(loglik) <- "logLik"
        return(loglik)
    }

    n <- 0
    loglik <- 0; for (i in seq_len(object$ngroup)) {
                     n <- n + object$samplestat[[i]]$n
                     val <- logLik(object$lvm[[i]],pp[[i]],data[[i]],weights=weights[[i]],type=type,...)
                     loglik <- loglik + val
                 }
    attr(loglik, "nall") <- n
    attr(loglik, "nobs") <- n##-length(p)
    attr(loglik, "df") <- length(p)
    class(loglik) <- "logLik"
    return(loglik)
}

###}}} logLik.multigroup

###{{{ logLik.multigroupfit

##' @export
logLik.multigroupfit <- function(object,
                          p=pars(object), weights=Weights(object), model=object$estimator, ...) {
    logLik(object$model0,p=p,weights=weights,model=model,...)
}
###}}} logLik.multigroup
kkholst/lava documentation built on Sept. 6, 2021, 11:36 p.m.