R/missing_value_impute.R

#missing value knn impute and outlier remove
Data_impute <- function(data, inf = "inf", intensity = "LFQ", miss.value = NA,
                        splNExt = TRUE, maxNAratio = 0.5,
                        removeOutlier = TRUE,
                        outlierdata = "intensity", iteration = NA, sdout = 2,
                        distmethod = "manhattan", A.IAC = FALSE,
                        dohclust = FALSE, treelabels = NA,
                        plot = TRUE, filename = NULL,
                        text.cex = 0.7, text.col = "red", text.pos = 1,
                        text.labels = NA, abline.col = "red", abline.lwd = 2,
                        impute = TRUE, verbose = 1, ...){
  if (is.null(data[[inf]]) | is.null(data[[intensity]])) stop("data, inf or intensity is wrong.")
  if (class(data[[intensity]]) != "data.frame") stop("data[[intensity]] must be a data.frame.")
  if (is.character(as.matrix(data[[intensity]]))) stop("data[[intensity]] contains character.")
  #extract sample name
  if (splNExt) {
    inten <- data[[intensity]];
    if (intensity == "LFQ") colnames(inten) <- gsub("LFQ.intensity.(.*)", "\\1",
                                                    colnames(inten));
    if (intensity == "iBAQ") colnames(inten) <- gsub("iBAQ.(.*)", "\\1",
                                                     colnames(inten));
    if (intensity == "intensity") colnames(inten)<-gsub("Intensity.(.*)", "\\1",
                                                        colnames(inten));
    data[[intensity]] <- inten;
    rm(inten)
  }
  data <- .proteomic_data(data[[inf]], data[[intensity]]);
  data <- .NAnum.proteomic_data(data, miss.value = miss.value, verbose = verbose);
  #table(data$inf$NA_num)
  data_imp <- .deNA2.proteomic_data(data, trunc(maxNAratio * ncol(data$intensity)));
  #remove Outlier Sample
  if (removeOutlier == 2) {
    outlierdata <- match.arg(outlierdata,
                             c("intensity","relative_value","log2_value"));
    if (outlierdata != "intensity") data_imp <- .proteomic_data(data_imp$inf,
                                                                data_imp$intensity);
    distmethod <- match.arg(distmethod,
                            c("manhattan","euclidean", "canberra","correlation"));
    outliersample = 1; outlier = NULL; iter = 0;
    while (outliersample > 0) {
      iter <- iter + 1;
      if(distmethod == "correlation")
        {
        # intra-assay correlation
        IAC <- cor(data_imp[[outlierdata]], use = "p");
        if (A.IAC) IAC <- ((1+IAC)/2)^2;
        #IAC histogram
        #hist(IAC,breaks=50,sub=paste("Mean=",format(mean(IAC[upper.tri(IAC)]),digits=3)))
        # 1-IAC as distance
        dist <- as.dist(1 - IAC);
        } else
        {
        dist <- dist(t(data_imp[[outlierdata]]), method = distmethod);
        IAC <- as.matrix(dist);
        }
      if (dohclust) {
        sampleTree <- hclust(dist, method = "average");
        if (sum(is.na(treelabels))) treelabels <- dimnames(data_imp$intensity)[[2]];
        if (is.character(filename) & length(filename) == 1){
          if (!dir.exists("plot")) dir.create("plot");
          pdf(paste0("plot/", filename, " sampleTree ",iter,".pdf"))
        }

        plot (sampleTree, main = "Sample clustering to detect outliers",
              sub = "", labels = treelabels, ...);
        if (is.character(filename) & length(filename) == 1) dev.off()
        #cluster<-hclust(as.dist(1-IAC),method="average")
        #plot(cluster,cex=0.7,labels=dimnames(data$intensity)[[2]])
      }
      # Another way to visualize outliers is to calculate the mean IAC for each array and examine this distribution
      meanIAC <- apply(IAC, 2, mean);#hist(meanIAC,breaks=10)
      sdCorr <- sd(meanIAC);#sd
      numbersd <- abs(meanIAC - mean(meanIAC)) / sdCorr;
      #if meanIAC is normal distribution,+-2 means 95%
      out_name <- dimnames(data_imp[[outlierdata]])[[2]][numbersd > sdout];
      out_pos <- as.numeric(which(numbersd > 2));
      #outliers
      if (plot) {
        if (sum(is.na(text.labels))) text.labels <- out_name;
        col <- rep("black",length(numbersd));
        col[out_pos] <- "red";
        pch<-rep(20, length(numbersd));
        pch[out_pos] <- 21;
        if (is.character(filename) & length(filename) == 1){
          if (!dir.exists("plot")) dir.create("plot");
          pdf(paste0("plot/", filename, " outliersample ",iter,".pdf"))
        }
        plot(numbersd, pch = pch,bg = "red",col = col,xlab = "");
        if (length(out_pos) > 0) {
          text(out_pos, numbersd[out_pos], labels = text.labels,
               pos = text.pos,cex = text.cex, col = text.col);
          abline(h = sdout, col = abline.col, lwd = abline.lwd);
        }
        if (is.character(filename) & length(filename) == 1) dev.off()
        text.labels <- NA;
      }
      outliersample <- length(out_pos);
      outlier <- c(outlier, out_name);
      if (outliersample > 0) {
        data_imp$intensity <- data_imp$intensity[ ,-out_pos];
        data_imp$inf <- data_imp$inf[ ,-which(colnames(data_imp$inf) == "NA_num")];
        data_imp <- .NAnum.proteomic_data(data_imp, miss.value=miss.value);
        data_imp <- .deNA2.proteomic_data(data_imp,
                                          trunc(0.5*ncol(data_imp$intensity)));
        if (outlierdata != "intensity")
          data_imp <- .proteomic_data(data_imp$inf, data_imp$intensity);
      }
      if (!is.na(iteration) & iter >= iteration) outliersample <- 0;
    }
  }
  if (removeOutlier) {
    data_deoutlier <- try(.OutlierDetect(data_imp, iteration = iteration,
                                         outlierdata = outlierdata,
                                         distmethod = distmethod, A.IAC = A.IAC,
                                         miss.value = miss.value, sdout = sdout,
                                         dohclust = dohclust, treelabels = treelabels,
                                         plot = plot, filename = filename,
                                         text.cex = text.cex, text.col = text.col,
                                         text.pos = text.pos, text.labels = text.labels,
                                         abline.col = abline.col, abline.lwd = abline.lwd,
                                         ...));
    if (class(data_deoutlier) != "try-error")
      data_imp <- data_deoutlier$data else
        warning("removeOutlier is failed.");
  }
  if (impute)
  {#knn impute
  dimp <- try(.knn_impute3.proteomic_data(data_imp, miss.value = miss.value,
                                          maxp = nrow(data_imp$intensity), ...));
  if (class(dimp) != "try-error")
    data_imp <- dimp else
      warning("impute is failed.")
  }
  data_imp
}



#geomean, relative_value and log2 value
.proteomic_data <- function(inf, intensity){
  geo_mean <- function(data) {
    data[data < 0] <- NA;
    log_data <- log(data);
    gm <- NA;
    for (i in 1:length(log_data[ ,1])){
      num <- as.numeric(log_data[i, ]);
      gm[i] <- exp(mean(num[is.finite(num)]));
    }
    gm
  }
  proteomic_data <- list();
  proteomic_data$inf <- inf;
  proteomic_data$intensity <- intensity;
  proteomic_data$geo_mean <- geo_mean(intensity);
  proteomic_data$relative_value <- intensity/proteomic_data$geo_mean;
  proteomic_data$log2_value <- log2(proteomic_data$relative_value);
  class(proteomic_data) <- "proteomic_data";
  proteomic_data
}

#NA number count
.NAnum.proteomic_data <- function(data, miss.value = NA, colmax = 0.8, verbose = 1){
  #calculate NA number every column
  if (is.numeric(miss.value)){
    NA_num <- as.numeric(drop(rep(1, nrow(data$intensity))
                              %*% (data$intensity == miss.value)));
    pos <- which(NA_num > trunc(colmax * nrow(data$intensity)));
    if (length(pos) > 0) {
      if(verbose > 0) warning (paste("The sample", colnames(data$intensity)[pos],
                                     "have been removed"));
      data$intensity <- data$intensity[ ,-pos];
      data$relative_value <- data$relative_value[ ,-pos];
      data$log2_value <- data$log2_value[ ,-pos];
    }
    #calculate NA number every row
    NA_num <- as.numeric(drop((data$intensity==miss.value)
                              %*% rep(1, ncol(data$intensity))));
  }
  else if (is.na(miss.value)) {
    NA_num <- as.numeric(drop(rep(1, nrow(data$intensity))
                              %*% is.na(data$intensity)));
    pos <- which(NA_num > trunc(colmax * nrow(data$intensity)));
    if (length(pos) > 0) {
      if(verbose > 0) warning (paste("The sample",colnames(data$intensity)[pos],
                                     "have been removed"));
      data$intensity <- data$intensity[ ,-pos];
      data$relative_value <- data$relative_value[ ,-pos];
      data$log2_value <- data$log2_value[ ,-pos];
    }
    NA_num <- as.numeric(drop(is.na(data$intensity)
                              %*% rep(1, ncol(data$intensity))));
  }
  else { stop ("wrong missing value setting"); }
  data$inf <- data.frame(data$inf, NA_num, stringsAsFactors = FALSE);
  data
}

#remove NA number large than n
.deNA.proteomic_data <- function(data, n, miss.value = NA){
  #NA_num <- NA;
  #for (i in 1:nrow(data$inf)) {  #length(data$inf$X#
  #  NA_num[i] <- sum(is.na(data$log2_value[i,]));}
  #calculate NA number every row
  if (!is.na(miss.value) & miss.value == 0) {
    NA_num <- as.numeric(drop((data$intensity == 0)
                              %*% rep(1, ncol(data$intensity))));
  }
  else if(is.na(miss.value)){
    NA_num <- as.numeric(drop(is.na(data$intensity)
                              %*% rep(1, ncol(data$intensity))));
  }
  else { stop ("wrong missing value setting");}
  pos <- which(NA_num <= n);
  row_name <- row.names(data$inf)[pos];
  extract2.proteomic_data <- function(x, row_num){
    #查找row_num在x$inf矩阵中行名中的位置,依据row_num顺序显示
    row <- match(row_num, row.names(x$inf));
    inf <- x$inf[row, ];
    intensity <- x$intensity[row, ];
    relative_value <- x$relative_value[row,] ;
    log2_value <- x$log2_value[row, ];
    #list(inf=inf,intensity=intensity,relative_value=relative_value,log2_value=log2_value)
    proteomic_data <- list();
    proteomic_data$inf <- inf;
    proteomic_data$intensity <- intensity;
    proteomic_data$relative_value <- relative_value;
    proteomic_data$log2_value <- log2_value;
    class(proteomic_data) <- "proteomic_data";
    proteomic_data
  }
  extract2.proteomic_data(data,row_name)
}
.deNA2.proteomic_data <- function(data, n){
  pos <- which(data$inf$NA_num <= n);
  inf <- data$inf[pos,];
  intensity <- data$intensity[pos,];
  proteomic_data <- list();
  proteomic_data$inf <- inf;
  proteomic_data$intensity <- intensity;
  class(proteomic_data) <- "proteomic_data";
  proteomic_data
}

#missing value knn impute
.knn_impute.proteomic_data <- function(data){
  geo_mean <- function(data) {
    data[data < 0] <- NA;
    log_data <- log(data);
    gm <- NA;
    for (i in 1:length(log_data[ ,1])) {
      num <- as.numeric(log_data[i, ]);
      gm[i] <- exp(mean(num[is.finite(num)]));
    }
    gm
  }
  if (!requireNamespace("impute", quietly = TRUE)) {
    stop ("impute in Bioconductor needed for this function to work. Please install it.",
         call. = FALSE)
  }
  intensity <- impute::impute.knn(as.matrix(data$intensity));
  intensity <- as.data.frame(intensity$data);
  geo_mean <- geo_mean(intensity);
  relative_value <- intensity/geo_mean;
  #relative_value <- impute::impute.knn(as.matrix(data$relative_value));
  #relative_value <- as.data.frame(relative_value$data);
  log2_value <- log2(relative_value);
  #log2_value <- impute::impute.knn(as.matrix(data$log2_value));
  #log2_value<as.data.frame(log2_value<$data);
  proteomic_data <- list();
  proteomic_data$inf <- data$inf;
  proteomic_data$intensity <- intensity;
  proteomic_data$relative_value <- relative_value;
  proteomic_data$log2_value <- log2_value;
  class(proteomic_data) <- "proteomic_data";
  proteomic_data
}
.knn_impute2.proteomic_data <- function(data){
  geo_mean <- function(data) {
    data[data < 0] <- NA;
    log_data <- log(data);
    gm <- NA;
    for (i in 1:length(log_data[,1])){
      num <- as.numeric(log_data[i, ]);
      gm[i] <- exp(mean(num[is.finite(num)]));
    }
    gm
  }
  if (!requireNamespace("impute", quietly = TRUE)) {
    stop ("impute in Bioconductor needed for this function to work. Please install it.",
         call. = FALSE)
  }
  intensity <- impute::impute.knn(as.matrix(data$intensity));
  intensity <- as.data.frame(intensity$data);
  geo_mean <- geo_mean(intensity);
  #relative_value <- intensity/geo_mean;
  relative_value <- impute::impute.knn(as.matrix(data$relative_value));
  relative_value <- as.data.frame(relative_value$data);
  #log2_value <- log2(relative_value);
  log2_value <- impute::impute.knn(as.matrix(data$log2_value));
  log2_value <- as.data.frame(log2_value$data);
  proteomic_data <- list();
  proteomic_data$inf <- data$inf;
  proteomic_data$intensity <- intensity;
  proteomic_data$relative_value <- relative_value;
  proteomic_data$log2_value <- log2_value;
  class(proteomic_data) <- "proteomic_data";
  proteomic_data
}
.knn_impute3.proteomic_data <- function(data,miss.value = NA,...){
  geo_mean <- function(data) {
    data[data < 0] <- NA;
    log_data <- log(data);
    gm <- NA;
    for(i in 1:length(log_data[,1])){
      num <- as.numeric(log_data[i, ]);
      gm[i] <- exp(mean(num[is.finite(num)]));
    }
    gm
  }
  if (!requireNamespace("impute", quietly = TRUE)) {
    stop ("impute in Bioconductor needed for this function to work. Please install it.",
         call. = FALSE)
  }
  if (length(miss.value) != 1 ) stop("wrong miss value");
  if (!miss.value %in% c(0, 1, NA)) stop("wrong miss value");
  data$intensity[data$intensity == miss.value] <- NA;
  intensity <- impute::impute.knn(as.matrix(data$intensity),...);
  intensity <- as.data.frame(intensity$data);
  geo_mean <- geo_mean(intensity);
  relative_value <- intensity/geo_mean;
  #relative_value <- impute::impute.knn(as.matrix(data$relative_value));
  #relative_value <- as.data.frame(relative_value$data);
  log2_value <- log2(relative_value);
  #log2_value <- impute::impute.knn(as.matrix(data$log2_value));
  #log2_value<as.data.frame(log2_value<$data);
  proteomic_data <- list();
  proteomic_data$inf <- data$inf;
  proteomic_data$intensity <- intensity;
  proteomic_data$relative_value <- relative_value;
  proteomic_data$log2_value <- log2_value;
  class(proteomic_data) <- "proteomic_data";
  proteomic_data
}




.OutlierDetect <- function(data, iteration = NA, outlierdata = "intensity",
                           distmethod = "manhattan", A.IAC = FALSE,
                           miss.value = NA, sdout = 2,
                           dohclust = FALSE, treelabels = NA,
                           plot = TRUE, filename = NULL,
                           text.cex = 0.7, text.col = "red", text.pos = 1,
                           text.labels = NA, abline.col = "red", abline.lwd = 2,
                           ...){
  distmethod <- match.arg(distmethod,
                          c("manhattan","euclidean", "canberra","correlation"));
  outlierdata <- match.arg(outlierdata,
                           c("intensity","relative_value","log2_value"));
  if (outlierdata != "intensity") data <- .proteomic_data(data$inf, data$intensity);
  outliersample = 1; outlier = NULL; iter = 0;
  while (outliersample > 0){
    iter <- iter + 1;
    if (distmethod == "correlation")
    {
      # intra-assay correlation
      IAC <- cor(data[[outlierdata]], use = "p");
      if (A.IAC) IAC <- ((1+IAC)/2)^2;
      #IAC histogram
      #hist(IAC,breaks=50,sub=paste("Mean=",format(mean(IAC[upper.tri(IAC)]),digits=3)))
      # 1-IAC as distance
      dist <- as.dist(1 - IAC);
    } else
    {
      dist <- dist(t(data[[outlierdata]]), method = distmethod);
      IAC <- as.matrix(dist);
    }
    if(dohclust) {
      sampleTree <- hclust(dist, method = "average");
      if(sum(is.na(treelabels))) treelabels <- dimnames(data$intensity)[[2]];
      if (is.character(filename) & length(filename) == 1){
        dir.create("plot");
        pdf(paste0(filename, " sampleTree ",iter,".pdf"))
      }
      plot(sampleTree, main = "Sample clustering to detect outliers",
           sub="", labels=treelabels,...);
      if (is.character(filename) & length(filename) == 1) dev.off()
      #cluster <- hclust(as.dist(1-IAC),method="average")
      #plot(cluster,cex=0.7,labels=dimnames(data$intensity)[[2]])
    }
    # Another way to visualize outliers is to calculate the mean IAC for each array and examine this distribution
    meanIAC <- apply(IAC, 2, mean);#hist(meanIAC,breaks=10)
    sdCorr <- sd(meanIAC);#sd
    numbersd <- abs(meanIAC - mean(meanIAC)) / sdCorr;
    #if meanIAC is normal distribution,+-2 means 95%
    out_name <- dimnames(data[[outlierdata]])[[2]][numbersd > sdout];
    out_pos <- as.numeric(which(numbersd > sdout));
    #outliers
    if (plot) {
      if (sum(is.na(text.labels))) text.labels <- out_name;
      col <- rep("black", length(numbersd));
      col[out_pos] <- "red";
      pch <- rep(20, length(numbersd));
      pch[out_pos] <- 21;
      if (is.character(filename) & length(filename) == 1){
        if(!dohclust) dir.create("plot");
        pdf(paste0(filename, " outliersample ",iter,".pdf"))
      }
      plot(numbersd, pch = pch, bg = "red", col = col, xlab = "");
      if (length(out_pos) > 0){
        text(out_pos, numbersd[out_pos], labels = text.labels,
             pos = text.pos, cex = text.cex, col = text.col);
        abline(h = sdout, col = abline.col, lwd = abline.lwd);
      }
      if (is.character(filename) & length(filename) == 1) dev.off()
      text.labels <- NA;
    }
    outliersample <- length(out_pos);
    outlier <- c(outlier, out_name);
    if (outliersample > 0) {
      data$intensity <- data$intensity[ ,-out_pos];
      data$inf <- data$inf[ ,-which(colnames(data$inf) == "NA_num")];
      data <- .NAnum.proteomic_data(data, miss.value = miss.value);
      data <- .deNA2.proteomic_data(data, trunc(0.5*ncol(data$intensity)));
      if (outlierdata != "intensity")
        data <- .proteomic_data(data$inf, data$intensity);
    }
    if (!is.na(iteration) & iter >= iteration) outliersample <- 0;
  }
  list(outlier = outlier, data = data)
}
liukf10/TEST documentation built on May 20, 2019, 12:59 a.m.