R/Misc.R

Defines functions pythonBlankSplit discretize replicMeans propMisclass probIncorrectClass MAPE ulist doPCA predict.PCAwithFactors PCAwithFactors xyzPlot stdErrPred allNumeric getDFclasses catDFRow constCols multCols toAllNumeric toSubFactor toSuperFactor hasCharacters hasFactors xyDataframeToMatrix charsToFactors intToDummies factorTo012etc dummiesToInt dummiesToFactor checkNewLevels factorsToDummies unscale

Documented in allNumeric catDFRow charsToFactors constCols discretize doPCA dummiesToFactor dummiesToInt factorsToDummies factorTo012etc getDFclasses hasCharacters hasFactors MAPE multCols PCAwithFactors probIncorrectClass propMisclass pythonBlankSplit replicMeans stdErrPred toAllNumeric toAllNumeric toSubFactor toSuperFactor ulist unscale xyDataframeToMatrix xyzPlot

#######################################################################
#########################  scaling  #################################
#######################################################################

# undoes R 'scale()'

# reverses scaling on scaledx, dividing its columns by sds and adding
# ctrs; if either of the latter 2 is NULL, it is obtained via attr(), on
# the assumption that scaledx was produced from x by scale() or similar

# returns the original x; if scaledx 

unscale <- function(scaledx,ctrs=NULL,sds=NULL) {
   if (is.null(ctrs)) ctrs <- attr(scaledx,'scaled:center')
   if (is.null(sds)) sds <- attr(scaledx,'scaled:scale')
   origx <- scaledx
   for (j in 1:ncol(scaledx)) {
      origx[,j] <- origx[,j] * sds[j]
      origx[,j] <- origx[,j] + ctrs[j]
   }
   origx
}

# scale to [0,1]

# arguments:

#    m: a vector or matrix
#    scalePars: if not NULL, a 2-row matrix, with column i storing
#       the min and max values to be used in scaling column i of m;
#       typically, one has previously called mmscale() on a dataset and
#       saved the resulting scale parameters, and we want to use those
#       same scale parameters on new data
#    p: if m is a vector, specify the number of columns it should 
#       have as a matrix; code will try to take care of this by itself
#       if p is left at NULL

# value: a matrix, with column i consisting of the scaled version
#    of column i of m, and attribute as in scalePars (either copied from
#    the latter or if null, generated fresh

mmscale <- function (m,scalePars=NULL,p=NULL)
{
    # much of this code involves cases in which we have a vector but it
    # is to be treated as a matrix

    if (is.vector(m) && is.null(scalePars) && is.null(p))
       stop('specify argument p')
    if (is.null(p)) {
       if (!is.null(scalePars))
           p <- ncol(scalePars)
       else p <- ncol(m)
    }
    if (is.vector(m))
        m <- matrix(m, ncol = p)
    if (is.null(scalePars)) {
        rngs <- apply(m, 2, range)
        mins <- rngs[1, ]
        maxs <- rngs[2, ]
    }
    else {
        mins <- scalePars[1, ]
        maxs <- scalePars[2, ]
        rngs <- scalePars
    }
    ranges <- maxs - mins
    tmm <- function(i) m[, ] <- (m[, i] - mins[i])/ranges[i]
    m <- sapply(1:ncol(m), tmm)
    if (is.vector(m))
        m <- matrix(m, ncol = p)
    attr(m, "minmax") <- rngs
    m
}

#######################################################################
###################  factors and dummy variables  #####################
#######################################################################

# these routines are useful in that some regression packages insist that
# predictor be factors, while some require dummy variables

# for each column in dfr, if factor then replace by dummies,
# else just copy column; if omitLast, then dummy for last level of
# factor is not included in output

# a key point is that, for later prediction after fitting a model, one
# needs to use the same transformations; otherwise, the data to be
# predicted may be missing a level of some factor; this of course is
# especially true if one is predicting a single case

# thus the factor names and levels are saved in attributes, and can be
# used as input, via factorInfo and factorsInfo for factorToDummies()
# and factorsToDummies(): 

# factorToDummies() outputs and later inputs factorInfo
# factorsToDummies() outputs and later inputs factorsInfo

####################  factorsToDummies()  ######################

# inputs a data frame, outputs same but with all factor cols expanded to
# dummies

# arguments

#    dfr: a data frame
#    omitLast: if TRUE, make m-1 dummies for an m-level factor
#    factorsInfo: factor levels found earlier, R list, element nm
#       is levels of factor named nm
#    dfOut: if TRUE, output a data frame rather than a matrix

# if the input has cols not numeric or factor, ftn will quit

factorsToDummies <- function(dfr,omitLast=FALSE,factorsInfo=NULL,
   dfOut=FALSE)
{
   if (is.factor(dfr)) dfr <- as.data.frame(dfr)

   # for now, no input cols other than numeric, factor allowed
   ## nnf <- function(i)  (!is.numeric(dfr[,i]) && !is.factor(dfr[,i]))
   ## notnumfact <- sapply(1:ncol(dfr),nnf)
   ## if (any(notnumfact)) 
   ##    stop('non-numeric, non-factor columns encountered')

   outDF <- NULL
   nullFI <- is.null(factorsInfo)
   if (nullFI) factorsInfoOut <- list()
   for (i in 1:ncol(dfr)) {
      dfi <- dfr[,i]
      if (length(levels(dfi)) == 1 && length(dfi) > 1) {
         msg <- paste(names(dfr)[i],'constant column: ',i) 
         warning(msg)
      }
      colName <- names(dfr)[i]
      if (!is.factor(dfi)) {
         if (!is.numeric(dfi)) 
            dfi <- as.factor(dfi)
         outDF <- cbind(outDF,dfi) 
         colnames(outDF)[ncol(outDF)] <- colName
      } else {
         dumms <- factorToDummies(dfi,colName,omitLast=omitLast,
            factorInfo=factorsInfo[[colName]])
         if (nullFI) {
            factorInfo <- attr(dumms,'factorInfo')
            factorsInfoOut[[colName]] <- factorInfo
         }
         outDF <- cbind(outDF,dumms)
      }
   }
   res <- if (!dfOut) as.matrix(outDF) else outDF
   if (nullFI) {
      attr(res,'factorsInfo') <- factorsInfoOut
   }  else
      attr(res,'factorsInfo') <- factorsInfo
   res
}

####################  factorToDummies()  ######################

# converts just a single factor 

# def of omitLast is in comments above

# factorInfo is used if we are converting a factor that we've already
# converted on previous data; this argument is used to ensure that the
# conversion on the new data is consistent with the old, important for
# prediction settings

# easier to have both f, fname required

factorToDummies <- function (f,fname,omitLast=FALSE,factorInfo=NULL) 
{
    n <- length(f)
    fl <- levels(f)
    if (!is.null(factorInfo)) {
       fn <- factorInfo$fname
       if (fn != fname) stop('mismatched fname')
       ol <- factorInfo$omitLast
       if (ol != omitLast) stop('mismatChed omitLast')
       fullLevels <- factorInfo$fullLvls
       if (length(setdiff(fl,fullLevels))) 
          stop(paste('new factor level found'))
    } else fullLevels <- fl
    useLevels <- 
       if(omitLast) fullLevels[-length(fullLevels)] else fullLevels
    ndumms <- length(useLevels)
    dms <- matrix(nrow = n, ncol = ndumms)
    for (i in 1:ndumms) dms[, i] <- as.integer(f == useLevels[i])
    colnames(dms) <- paste(fname,'.', useLevels, sep = "")
    tmp <- list()
    tmp$fname <- fname
    tmp$omitLast <- omitLast
    tmp$fullLvls <- fullLevels  # all levels even last
    attr(dms,'factorInfo') <- tmp
    dms
}

# in predicting after fitting a regression model, a factor that was fit
# may now encounter new levels, preventing prediction; this function
# reports which factors/levels, if any, are new; it should be called
# before calling predict()

# arguments:

#    info1: one of
#       the "old" data frame, used in fit (case A); 
#       an R list of levels for each factor in that frame
#          (case B); or
#       output of a qe*() call on that frame that
#          has a 'factorLevelsPresent' component
#          (future enhancement) (case C)
#    data2: "new" data frame, used in prediction

# value:

#    vector of row numbers in which a new factor level was found

checkNewLevels <- function(info1,data2) 
{ 
   tmp <- sapply(data2,is.factor)
   factorNames <- names(data2)[tmp]

   if (is.data.frame(info1)) {  # case A
     tmp <- sapply(info1,is.factor)
     tmp <- names(info1)[tmp]
     levelsPresent1 <- lapply(info1[tmp],function(t) unique(t))
   } else if (setequal(names(info1),names(data2))) {  # case B 
        levelsPresent1 <- info1  # case C
     } else {  # case C
        levelsPresent1 <- info1$factorLevelsPresent
     }

   res <- NULL
   for (nm in factorNames) {
      tmp <- setdiff(levels(data2[[nm]]),levelsPresent1[[nm]]) 
      if (length(tmp) > 0) {
         matches <- which(data2[[nm]] %in% tmp)
         res <- union(res,matches)
      }
   }
   res
}


####################  dummiesToFactor()  ######################

# makes a factor from a single related set of dummies dms; if the
# variable has k levels, inclLast = FALSE means there are only k-1
# dummies provided, so the k-th must be generated

dummiesToFactor <- function(dms,inclLast=FALSE) 
{
   dms <- as.matrix(dms)
   if (!inclLast) {
      lastCol <- 1 - apply(dms,1,sum)
      dms <- cbind(dms,lastCol)
   }
   where1s <- apply(dms,1,function(rw) which(rw == 1))
   colnames(dms) <- paste0('V',1:ncol(dms),sep='')
   nms <- colnames(dms)
   f <- nms[where1s]
   as.factor(f)
}

####################  dummiesToInt()  ######################

dummiesToInt <- function(dms,inclLast=FALSE) {
  as.numeric(dummiesToFactor(dms=dms,inclLast=inclLast))
}

# maps a factor to 0,1,2,...,m-1 where m is the number of levels of f;
# saves the levels in an attribute, e.g. for use in a later predict()
# setting; if using earlierLevels, then f will be a character vector
# with values in earlierLevels

factorTo012etc <- function(f,earlierLevels=NULL)  {
   if (!is.null(earlierLevels)) {
      checkOneValue <- function(val) which(val == earlierLevels) - 1
      return(sapply(f,checkOneValue))
   }
   tmp <- as.numeric(f)-1
   attr(tmp,'earlierLevels') <- levels(f)
   tmp
}

####################  intToDummies()  ######################

# inputs an integer vector x and creates dummies for the various values
intToDummies <- function(x,fname,omitLast=TRUE) 
{
   tmp <- as.factor(x)
   factorToDummies(tmp,fname,omitLast=omitLast)
}

####################  charsToFactors()  ######################

# inputs a data frame and converts all character columns to factors
charsToFactors <- function(dtaf) 
{
   for (i in 1:ncol(dtaf)) {
      cli <- dtaf[,i]
      if (is.character(cli)) {
         dtaf[,i] <- as.factor(cli)
      }
   }
   dtaf
}

####################  xyDataframeToMatrix()  ######################

# inputs a data frame intended for regression/classification, with X in
# the first cols and Y in the last; converts all factors to dummies, and
# outputs a matrix; in creating dummies, r-1 are retained for r levels,
# except for Y

# see also toAllNumeric() below

xyDataframeToMatrix <- function(xy) {
   p <- ncol(xy)
   x <- xy[,1:(p-1)]
   y <- xy[,p]
   xd <- factorsToDummies(x,omitLast=TRUE)
   yd <- factorToDummies(y,'y',omitLast=FALSE)
   as.matrix(cbind(xd,yd))
}

####################  hasFactors()  ######################

# x is a data frame; returns TRUE if at least one column is a factor
hasFactors <- function(x) 
{
   for (i in 1:ncol(x)) {
      if (is.factor(x[,i])) return(TRUE)
   }
   FALSE
}

####################  hasCharacters()  ######################

# dfr is a data frame; returns TRUE if at least one column is in character mode
hasCharacters <- function(dfr) 
{
   for (i in 1:ncol(dfr)) {
      if (is.character(dfr[,i])) return(TRUE)
   }
   FALSE
}

####################  toSuperFactor()  ######################

# say we have a factor f1, then encounter f2, with levels a subset of
# those of f1; we want to change f2 to have the same levels as f1; seems
# that this can NOT be done via levels(f2) <- levels(f1); typically used
# in predict() functions
toSuperFactor <- function(inFactor,superLevels) 
{
   inFactorChars <- as.character(inFactor)
   extraChars <- setdiff(superLevels,inFactorChars)
   nExtra <- length(extraChars)
   if (nExtra == 0) return(inFactor)
   newInFactorChars <- c(inFactorChars,extraChars)
   nExtra <- length(extraChars)
   tmp <- as.factor(newInFactorChars)
   nTmp <- length(tmp)
   start <- nTmp - nExtra + 1
   end <- nTmp
   tmp[-(start:end)]
}

####################  toSubFactor()  ######################

# here we have a factor f with various levels, but want to lump all
# levelsl but the ones in saveLevels to a new level, lumpedLevel; the
# default for the latter is 'zzzOther', chosen to ensure that the lumped
# level is last
toSubFactor <- function(f,saveLevels,lumpedLevel='zzzOther') 
{
   lvls <- levels(f)
   fChar <- as.character(f)
   other <- setdiff(lvls,saveLevels)
   whichOther <- which(fChar %in% other)
   fChar[whichOther] <- lumpedLevel
   as.factor(fChar)
}

####################  toAllNumeric()  ######################

# change character variables to factors, then all factors to dummies,
# recording factorInfo for later use in prediction; put result in wm

# w: data frame
# factorsInfo: value found in a previous call 

toAllNumeric <- function(w,factorsInfo=NULL)
{
   if (hasCharacters(w)) {
      stop('character variables currently not supported')
      ## w <- charsToFactors(w)
   }
   if (hasFactors(w)) {
      wm <- factorsToDummies(w,omitLast=TRUE,factorsInfo=factorsInfo)
      attr(wm,'factorsInfo')
   } else {
      wm <- w
   }
   wm
} 

#######################################################################
###################  misc. data frame/matrix ops  ######################
#######################################################################

# multiply x[,cols] by vals, e.g. x[,cols[1]] * vals[1]
# code by Bochao Xin
multCols <- function(x,cols,vals) {
#     tx <- t(x[,cols])
#     x[,cols] <- t(tx*vals)
#    for (i in 1:length(cols)) {
#       cl <- cols[i]
#       x[,cl] <- x[,cl] * vals[1,i]
#    }
   tx <- t(x[,cols])
   x[,cols] <- t(tx*vals)
   x
}

# check for constant cols  

# d is a matrix or data frame; returns empty vector (i.e. length == 0)
# if no cols are constant, otherwise indices of those that are constant

constCols <- function(d) {
   if (is.matrix(d)) d <- as.data.frame(d)
   nDistinct <- sapply(lapply(d, unique), length)
   return(which(nDistinct == 1))
}

# print a data frame row

catDFRow <- function(dfRow) {
  for (i in 1:ncol(dfRow)) {
     cat(as.character(dfRow[1,i]),' ')
  }
}

# print the classes of a data frame

getDFclasses <- function(dframe) {
   tmp <- sapply(1:ncol(dframe),function(i) class(dframe[,i]))
   names(tmp) <- names(dframe)
   tmp
}

# check whether all elements of a list, including a data frame, are
# numeric

allNumeric <- function(lst) 
{
   tmp <- sapply(lst,is.numeric)
   all(tmp) 
}

#######################################################################
######################  misc. lm() routines  #######################
#######################################################################

# computes the standard error of the predicted Y for X = xnew

stdErrPred <- function(regObj,xnew) {
   xx <- c(1,xnew)  # the 1 accounts for the intercept term
   xx <- as.numeric(xx)  # in case xnew was a row in a data frame
   as.numeric(sqrt(xx %*% vcov(regObj) %*% xx))
}

#######################################################################
######################  misc. graphics ################################
#######################################################################

# "3-D" graphs of (x,y,z), where (x,y) points are plotted in 2-D for
# various values of z; pts connected by lines, with z values displayed
# at the connection points; grouping is allowed, specified via a 4th
# column if desired

# arguments:

#    xyz: matrix/df consisting of x, y and z above, possible a 4th; in
#    latter case, xyz must be a data frame
#    clrs: colors for the various lines; default uses heat.colors()
#    xlim, ylim: as in R plot(); default uses largest ranges
#    xlab,ylab: as in R plot()
#    legendPos: first argument to legend(), e.g. 'topright'

xyzPlot <- function(xyz,clrs=NULL,cexText=1.0,
   xlim=NULL,ylim=NULL,xlab=NULL,ylab=NULL,legendPos=NULL,plotType='l') 
{
   if (is.null(xlim)) xlim <- range(xyz[,1])
   if (is.null(ylim)) ylim <- range(xyz[,2])
   if (is.null(xlab)) xlab <- 'x'
   if (is.null(ylab)) ylab <- 'y'
   oneLine <- (ncol(xyz) == 3)
   if (is.null(clrs)) {
      if (oneLine) clrs <- 'black'
      else clrs <- heat.colors(length(unique(xyz[,4]))) 
   }

   if (plotType == 'l')  
      # so that lines "move to the right," rather than a jumble
      xyz <- xyz[order(xyz[,1]),]

   nr <- nrow(xyz)
   lineGrps <- 
      if (oneLine) list(1:nr)
      else split(1:nr,xyz[,4])
   nGrps <- length(lineGrps)

   # plot(xyz[lineGrps[[1]],1:2],type=plotType,col=clrs[1],
   plot(1,
      xlim=xlim,ylim=ylim,xlab=xlab,ylab=ylab,cex=0.1)
   ### if (nGrps > 1)
      for (i in 1:nGrps) {
         if (plotType == 'l') {
            lines(xyz[lineGrps[[i]],1:2],type='l',col=clrs[i])
         }
         else
            points(xyz[lineGrps[[i]],1:2],col=clrs[i],cex=0.1)
      }

   for (i in 1:nGrps) {
      lns <- xyz[lineGrps[[i]],]
      text(lns[,1],lns[,2],lns[,3],cex=cexText,col=clrs[i])
   }

   # add legend
   if (!oneLine && !is.null(legendPos)) {
      legend(legendPos,legend=unique(xyz[,4]),col=clrs,lty=1)
   }
}

# print current image to file
prToFile <- function (filename)
{
    origdev <- dev.cur()
    parts <- strsplit(filename,".",fixed=TRUE)
    nparts <- length(parts[[1]])
    suff <- parts[[1]][nparts]
    if (suff == "pdf") {
        pdf(filename)
    }
    else if (suff == "png") {
        png(filename,bg='white')
    }
    else jpeg(filename)
    devnum <- dev.cur()
    dev.set(origdev)
    dev.copy(which = devnum)
    dev.set(devnum)
    dev.off()
    dev.set(origdev)
}

#######################################################################
######################  PCA routines ##################################
#######################################################################

####################  PCAwithFactors()  ###############################

# allows use of prcomp() with data that may include R factors

# arguments:

#    x: a data frame
#    nComps: number of PC components to use

# value:  object of class 'PCAwithFactors', with components as follows

#    pcout: output of calling prcomp() on toAllNumeric(x)
#    factorsInfo: attr from call to toAllNumeric(), if any; needed for
#       predict.PCAwithFactors()
#    preds: PCA version of x

# note: scaling will be applied, using mmscale()

PCAwithFactors <- function(x,nComps=ncol(x)) 
{
   if (!is.data.frame(x)) stop('x must be a data frame')
   namesOrigX <- names(x)
   nColsOrigX <- ncol(x)
   factorIdxs <- which(sapply(x,is.factor))
   if (identical(factorIdxs,1:ncol(x)))
      stop('case of all-factor data not supported yet')
   xscale <- mmscale(x[,-factorIdxs])
   minmax <- attr(xscale,'minmax')
   x[,-factorIdxs] <- xscale
   if (length(factorIdxs) > 0) {
      x <- factorsToDummies(x)
      factorsInfo <- attr(x,'factorsInfo')
   }
   pcout <- prcomp(x)
   xpca <- predict(pcout,x)[,1:nComps]
   res <- list(pcout=pcout,xpca=xpca,factorsInfo=factorsInfo,
      namesOrigX=namesOrigX,nColsOrigX=nColsOrigX,factorIdxs=factorIdxs,
      minmax=minmax,nComps=nComps)
   class(res) <- 'PCAwithFactors'
   res
}

# find PCA rep of newx; newx in original scale, output in scale of 
# mmscale() + PCA

predict.PCAwithFactors <- function(object,newx) 
{
   if (!identical(names(newx),object$namesOrigX))
      stop('column names mismatch')
   factorIdxs <- object$factorIdxs
   tmp <- as.matrix(newx[,-factorIdxs])
   p <- object$nColsOrigX - length(factorIdxs)
   newxscale <- mmscale(tmp,object$minmax,p=p)
   if (nrow(newx) == 1) newxscale <- newxscale[1,]
   newx[,-factorIdxs] <- newxscale
   newx <- factorsToDummies(newx,factorsInfo=object$factorsInfo)
   # unfortunately, cannot use predict.prcomp(), as it scales
   preds <- as.matrix(newx) %*% object$pcout$rotation
   preds[,1:object$nComps]
}

#########################  doPCA()  ##########################

# call prcomp(x,pcaProp), transform x to PCs, with the number of the
# latter being set according to the top pcaProp proportion of variance

doPCA <- function(x,pcaProp) 
{
   pcaout <- prcomp(x,scale.=TRUE)
   xpca <- predict(pcaout,x)
   xNames <- colnames(xpca)
   pcVars <- pcaout$sdev^2
   ncx <- ncol(xpca)
   csums <- cumsum(pcVars)
   csums <- csums/csums[ncx]
   numPCs <- min(which(csums >= pcaProp))
   xpca <- xpca[,1:numPCs]
   newData <- as.data.frame(xpca)
   names(newData) <- xNames[1:numPCs]
   list(pcaout=pcaout,numPCs=numPCs,newData=newData)
}

#######################################################################
######################  misc. other #####################################
#######################################################################

######################  misc. list ops ################################

# assign list components to individual variables of the same names

# similar to unpack() in zeallot pkg

ulist <- function(lst) 
{
   nms <- names(lst)
   if (any(nms == '')) stop('missing list name')
   tmp <- substitute(for (nm in nms) assign(nm,lst[[nm]]))
   eval(tmp,parent.frame())
}


#######################  loss functions  ###############################

# mean absolute prediction error
MAPE <- function(yhat,y) 
{
   if (!is.vector(y) || !is.vector(yhat)) 
      stop('inputs must be vectors')
   mean(abs(yhat-y))
}



# overall error rate

# either 

#    y is a vector of 0s and 1s, 
#    yhat a vector of estimated probabilities of 1

# or

#    y is a vector of numeric class labels, starting at 1 or 0
#    yhat is a matrix, with y[i,j] = prob of Y = j+startAt1-1

probIncorrectClass <- function(yhat,y,startAt1=TRUE
) 
{
   if (is.factor(y) || is.factor(yhat)) 
      stop('vector/matrix inputs only')
   if (is.vector(yhat)) {
      yhat <- round(yhat)
      return(mean(yhat != y))
   }
   classPred <- apply(yhat,1,which.max) 
   classActual <- y - startAt1 + 1
   mean(classPred != classActual)
}

# proportion misclassified; deprecated in favor of probIncorrectClass
propMisclass <- function(y,yhat) 
{
   if (!is.vector(y) && !is.factor(y)) 
      stop('predicted classes must be a vector or factor')
   mean(y != yhat)
}

# included lossFtn choices are MAPE and probIncorrectClass; user may
# supply others
findOverallLoss <- function (regests, y, lossFtn = MAPE) 
{
   loss1row <- function(regestsRow) lossFtn(y, regestsRow)
   apply(regests, 1, loss1row)
}

#########################  other misc.  ################################

# convenience wrapper for replicate; finds the means and standard errors
# and the nrep replication; toReplic can be a vector 

# arguments:

#    nrep:  number of replications
#    toReplic:  expression to replicate; use braces and semicolons if
#       more than one statement; must return either a number or a vector
#       of numbers
#    timing:  if TRUE, apply system.time() to each replication, and
#       calculate the mean elapsed time

# value:

#   mean outcomes of the simulation, plus an attribute storing the 
#   associated standard errors

replicMeans <- function(nrep,toReplic,timing=FALSE) {
   if (timing) {
      tmp <- paste0('{tm <- system.time(z <- ',toReplic,'); ')
      tmp <- paste0(tmp,'c(tm[3],z)}')
      toReplic <- tmp
   }
   cmd <- paste0('replicate(',nrep,',',toReplic,')')
   cmdout <- eval.parent(parse(text=cmd))
   # cmdout <- eval(parse(text=cmd))
   # if toReplic returns a vector, cmdout will be a matrix; to handle
   # this, make it a matrix anyway
   if (!is.matrix(cmdout)) cmdout <- matrix(cmdout,ncol=nrep)
   meancmdout <- rowMeans(cmdout)
   attr(meancmdout,'stderr') <- apply(cmdout,1,sd) / sqrt(nrep)
   meancmdout
}

# convenience wrapper for cut() 

# arguments:

#    x: numeric vector
#    endpts: endpoints for the desired intervals, treated as open on the
#       left and closed on the right; to avoid NA values, make sure all
#       of x is accommodated

# value:

#    discrete version of x, with values 1,2,3,...; will have an R
#    attribute, 'endpts', so as to remember which ones we used

discretize <- function(x,endpts)
{
   xc <- cut(x,endpts,labels=1:(length(endpts)-1))
   attr(xc,'endpts') <- endpts
   xc
}

require(gtools)

# the problem with strsplit('a  b') is that it yields (in [[1]]
# component) 'a','','b'; the version below doesn't give any empty
# strings
pythonBlankSplit <- function(s)
{
   tmp <- strsplit(s,' ')[[1]]
   tmp[tmp != '']
}


# use this after doing error checking, giving the user the choice of
# leaving, or continuing in the debugger
stopBrowser <- defmacro(msg,expr=
   {
   cat(msg,'\n')
   d <- readline('hit Enter to leave, or d to enter debugger: ')
   if (d == '') stop('')
   browser()
   }
)
matloff/regtools documentation built on Oct. 23, 2024, 2:58 a.m.