inst/rmgarch.tests/rmgarch.test1.R

#################################################################################
##
##   R package rmgarch by Alexios Ghalanos Copyright (C) 2009, 2010, 2011
##   This file is part of the R package rmgarch.
##
##   The R package rmgarch is free software: you can redistribute it and/or modify
##   it under the terms of the GNU General Public License as published by
##   the Free Software Foundation, either version 3 of the License, or
##   (at your option) any later version.
##
##   The R package rmgarch is distributed in the hope that it will be useful,
##   but WITHOUT ANY WARRANTY; without even the implied warranty of
##   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
##   GNU General Public License for more details.
##
#################################################################################

#################################################################################
# GO-GARCH model
#################################################################################
# Fit Tests


rmgarch.test1a = function(cluster = NULL)
{
	tic = Sys.time()
	# Mean Specification Tests
	# constant-mvnorm
	data(dji30ret)
	ex = as.matrix(cbind(apply(dji30ret[,4:8], 1, "mean"), apply(dji30ret[,12:20], 1, "mean")))
	# Lag the external data
	ex = rugarch:::.lagx(ex, n.lag = 1, pad = 0)
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[1], lag = 3),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
	fit.1 = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0,
			cluster = cluster)

	# AR(2)
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
	fit.2 = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0, A.init = fit.1@mfit$A,
			cluster = cluster)

	# AR(2)+EXREG
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2, external.regressors = ex),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
	# some convergence problems with normal solvers so use gosolnp
	fit.3 = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], solver = "gosolnp",
			solver.control = list(trace=1), out.sample = 0, A.init = fit.2@mfit$A,
			cluster = cluster)

	# VAR(2)
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 2),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
	fit.4 = gogarchfit(spec, data = dji30ret[,1:3,drop=FALSE], out.sample = 0,
			cluster = cluster)

	# VAR(2)+EXREG
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 2, external.regressors = ex),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
	fit.5 = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0, A.init = fit.4@mfit$A,
			cluster = cluster)

	# VAR(2)+EXREG+Robust
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 2, external.regressors = ex, robust = TRUE),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
	fit.6 = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0, A.init = fit.5@mfit$A,
			cluster = cluster)


	# Collect and Compare:
	modellik = c(0, likelihood(fit.2)-likelihood(fit.1), likelihood(fit.3)-likelihood(fit.1),
			likelihood(fit.4)-likelihood(fit.1), likelihood(fit.5)-likelihood(fit.1), likelihood(fit.6)-likelihood(fit.1))
	postscript("test1a1.eps", width = 8, height = 5)
	barplot(modellik, names.arg = c(paste("C[",round(likelihood(fit.1),0), "]", sep=""),"AR(2)", "ARX(2)", "VAR(2)", "VARX(2)", "robVARX(2)"),
			ylab = "Diff Log-Likelihood", xlab = "Model", col = "steelblue", main = "GOGARCH with different\nconditional mean models")
	dev.off()

	postscript("test1a2.eps", width = 10, height = 8)
	rc = rcor(fit.1)
	D = as.POSIXct(dimnames(rc)[[3]])
	plot(xts::xts(rc[1,2,], D), ylim = c(-0.4, 1),
			main = "GOGARCH Correlation [AA-AXP] under\ndifferent mean models",
			lty = 2, ylab = "Correlation", xlab = "Time", minor.ticks=FALSE,
			auto.grid=FALSE)
	rc = rcor(fit.2)
	lines(xts::xts(rc[1,2,], D), col = 2, lty = 2)
	rc = rcor(fit.3)
	lines(xts::xts(rc[1,2,], D), col = 3)
	rc = rcor(fit.4)
	lines(xts::xts(rc[1,2,], D), col = 4, lty = 2)
	rc = rcor(fit.5)
	lines(xts::xts(rc[1,2,], D), col = 5)
	rc = rcor(fit.6)
	lines(xts::xts(rc[1,2,], D), col = 6)
	legend("bottomleft", legend = c("C", "AR(2)", "ARX(2)", "VAR(2)", "VARX(2)", "robVARX(2)"),
			col = 1:6, lty = c(2,2,1,2,1,1), cex = 0.8, bty = "n")
	dev.off()

	# illustrate how the external regressors change the correlations
	postscript("test1a3.eps", width = 12, height = 20)
	T = fit.1@model$modeldata$T
	D = fit.1@model$modeldata$index[1:T]
	par(mfrow = c(3,1))
	plot(xts::xts(fit.1@model$modeldata$data[1:T,1], D),
			main = "AA Returns vs Fit under \ndifferent mean models",
			xlab = "Time", ylab = "R_t", minor.ticks = FALSE, auto.grid=FALSE)
	# fitted method returns xts for fit/filter objects
	lines(fitted(fit.6)[,1], lty = 2, col = 3, lwd = 0.5)
	lines(fitted(fit.2)[,1], lty = 2, col = 2)
	legend("topleft", legend = c("Actual", "robVARX(2)", "AR(2)"),
			col = c(1,3,2), lty = c(1,2,2), bty ="n")

	plot(xts::xts(fit.1@model$modeldata$data[1:T,2], D),
			main = "AXP Returns vs Fit under \ndifferent mean models",
			xlab = "Time", ylab = "R_t", minor.ticks = FALSE, auto.grid=FALSE)
	lines(fitted(fit.6)[,2], lty = 2, col = 3, lwd = 0.5)
	lines(fitted(fit.2)[,2], lty = 2, col = 2)
	legend("topleft", legend = c("Actual", "robVARX(2)", "AR(2)"),
			col = c(1,3,2), lty = c(1,2,2), bty ="n")

	plot(xts::xts(fit.1@model$modeldata$data[1:T,3], D), type = "l",
			main = "BA Returns vs Fit under \ndifferent mean models",
			xlab = "Time", ylab = "R_t", minor.ticks = FALSE, auto.grid=FALSE)
	lines(fitted(fit.6)[,3], lty = 2, col = 3, lwd = 0.5)
	lines(fitted(fit.2)[,3], lty = 2, col = 2)
	legend("topleft", legend = c("Actual", "robVARX(2)", "AR(2)"),
			col = c(1,3,2), lty = c(1,2,2), bty ="n")
	dev.off()

	toc = Sys.time()-tic
	cat("Elapsed:", toc, "\n")
	return(toc)
}

rmgarch.test1b = function(cluster = NULL)
{
	# Optimal VAR
	tic = Sys.time()
	require(vars)
	# Mean Specification Tests
	# constant-mvnorm
	data(dji30ret)
	ex = as.matrix(cbind(apply(dji30ret[,4:8], 1, "mean"), apply(dji30ret[,12:20], 1, "mean")))
	ex = rugarch:::.lagx(ex, n.lag = 1, pad = 0)

	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 1, lag.max = 6),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
	fit = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0,
			cluster = cluster)
	# compare to vars
	v2 = VAR(dji30ret[,1:3,drop=FALSE], lag.max=6, ic = "AIC")

	options(width = 120)
	zz <- file("test1b-1.txt", open="wt")
	sink(zz)
	print(fit@mfit$varcoef)
	cat("\n")
	print(fit@model$modelinc)
	cat("\nvars package output:\n")
	print(Bcoef(v2))
	sink(type="message")
	sink()
	close(zz)

	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 1, lag.max = 6, external.regressors = ex),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
	fit = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0,
			cluster = cluster)

	# compare to vars
	v2 = VAR(dji30ret[,1:3,drop=FALSE], lag.max=6, ic = "AIC", exogen = ex)

	options(width = 120)
	zz <- file("test1b-2.txt", open="wt")
	sink(zz)
	print(fit@mfit$varcoef)
	cat("\n")
	print(fit@model$modelinc)
	cat("\nvars package output:\n")
	print(Bcoef(v2))
	sink(type="message")
	sink()
	close(zz)

	toc = Sys.time()-tic
	cat("Elapsed:", toc, "\n")
	return(toc)
}

rmgarch.test1c = function(cluster = NULL)
{
	# ICA Tests
	tic = Sys.time()
	data(dji30ret)
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[1], lag = 3),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica","radical")[1])
	fit.1 = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0,
			cluster = cluster)

	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[1], lag = 3),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
	fit.2 = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0, gfun = "tanh",
			cluster = cluster)

	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[1], lag = 3),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[2])
	fit.3 = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0,
			cluster = cluster)


	modellik = data.frame(fastica_pow3=likelihood(fit.1), fastica_tanh=likelihood(fit.2), radical=likelihood(fit.3))
	rownames(modellik) = "LLH"

	options(width = 120)
	zz <- file("test1c.txt", open="wt")
	sink(zz)
	print(modellik)
	sink(type="message")
	sink()
	close(zz)

	toc = Sys.time()-tic
	cat("Elapsed:", toc, "\n")
	return(toc)
}

# filter tests
rmgarch.test1d = function(cluster = NULL)
{
	tic = Sys.time()
	data(dji30ret)
	ex = as.matrix(cbind(apply(dji30ret[,4:8], 1, "mean"), apply(dji30ret[,12:20], 1, "mean")))
	# Lag the external data
	ex = rugarch:::.lagx(ex, n.lag = 1, pad = 0)
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[1], lag = 3),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
	fit.1 = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0,
			cluster = cluster)
	filt.1 = gogarchfilter(fit.1, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0,
			cluster = cluster)

	options(width = 120)
	zz <- file("test1d-1.txt", open="wt")
	sink(zz)
	print(head(fitted(fit.1))==head(fitted(filt.1)))
	cat("\n")
	print(rcov(fit.1)[,,10]==rcov(filt.1)[,,10])
	sink(type="message")
	sink()
	close(zz)

	# AR(2)
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "pearson", "jade", "radical")[1])
	fit.2 = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0, A.init = fit.1@mfit$A,
			cluster = cluster)
	filt.2 = gogarchfilter(fit.2, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0,
			cluster = cluster)


	options(width = 120)
	zz <- file("test1d-2.txt", open="wt")
	sink(zz)
	print(head(fitted(fit.2))==head(fitted(filt.2)))
	cat("\n")
	print(rcov(fit.2)[,,10]==rcov(filt.2)[,,10])
	sink(type="message")
	sink()
	close(zz)

	# AR(2)+EXREG
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2, external.regressors = ex),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
	# some convergence problems with normal solvers so use gosolnp
	fit.3 = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], solver = "hybrid",
			solver.control = list(trace=0), out.sample = 0, A.init = fit.2@mfit$A,
			cluster = cluster)
	filt.3 = gogarchfilter(fit.3, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0,
			cluster = cluster)

	options(width = 120)
	zz <- file("test1d-3.txt", open="wt")
	sink(zz)
	print(head(fitted(fit.3))==head(fitted(filt.3)))
	cat("\n")
	print(rcov(fit.3)[,,10]==rcov(filt.3)[,,10])
	sink(type="message")
	sink()
	close(zz)

	# VAR(2)
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 2),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
	fit.4 = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0)
	filt.4 = gogarchfilter(fit.4, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0,
			cluster = cluster)
	filt.44 = gogarchfilter(fit.4, data =  dji30ret[1:10,1:3,drop=FALSE], out.sample = 0,
			cluster = cluster)

	options(width = 120)
	zz <- file("test1d-4.txt", open="wt")
	sink(zz)
	print(head(fitted(fit.4))==head(fitted(filt.4)))
	cat("\n")
	print(head(fitted(filt.44))==head(fitted(filt.4)))
	cat("\n")
	print(rcov(fit.4)[,,10]==rcov(filt.4)[,,10])
	sink(type="message")
	sink()
	close(zz)

	# VAR(2)+EXREG
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 2, external.regressors = ex),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
	fit.5 = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0, A.init = fit.4@mfit$A,
			cluster = cluster)
	filt.5 = gogarchfilter(fit.5, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0,
			cluster = cluster)

	options(width = 120)
	zz <- file("test1d-5.txt", open="wt")
	sink(zz)
	print(head(fitted(fit.5))==head(fitted(filt.5)))
	cat("\n")
	print(rcov(fit.5)[,,10]==rcov(filt.5)[,,10])
	sink(type="message")
	sink()
	close(zz)


	# VAR(2)+EXREG+Robust
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 2, external.regressors = ex, robust = TRUE),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])
	fit.6 = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0, A.init = fit.5@mfit$A,
			cluster = cluster)
	filt.6 = gogarchfilter(fit.6, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0,
			cluster = cluster)

	options(width = 120)
	zz <- file("test1d-6.txt", open="wt")
	sink(zz)
	print(head(fitted(fit.6))==head(fitted(filt.6)))
	cat("\n")
	print(rcov(fit.6)[,,10]==rcov(filt.6)[,,10])
	sink(type="message")
	sink()
	close(zz)

	toc = Sys.time()-tic
	cat("Elapsed:", toc, "\n")
	return(toc)

}

# NIG fit and test all methods
rmgarch.test1e = function(cluster = NULL)
{
	tic = Sys.time()
	data(dji30ret)
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[2], ica = c("fastica", "radical")[1])
	fit = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0, cluster = cluster)

	options(width = 120)
	zz <- file("test1e-1.txt", open="wt")
	sink(zz)
	print(likelihood(fit))
	cat("\n")
	print(as.matrix(fit, which = "A"))
	cat("\n")
	print(as.matrix(fit, which = "K"))
	cat("\n")
	print(as.matrix(fit, which = "U"))
	cat("\n")
	print(head(fitted(fit)))
	cat("\n")
	print(head(residuals(fit)))
	cat("\n")
	print(rcov(fit)[,,1])
	cat("\n")
	print(rcor(fit)[,,1])
	cat("\n")
	print(rcoskew(fit, from=1, to=2))
	cat("\n")
	print(rcokurt(fit, from=1, to=2))
	cat("\n")
	sink(type="message")
	sink()
	close(zz)

	# Geometric Portfolio Moments
	gp = gportmoments(fit, weights = rep(1/3,3))
	cf = convolution(fit, weights = rep(1/3,3), fft.step = 0.001, fft.by = 0.0001, fft.support = c(-1, 1),
		use.ff = TRUE, trace = 0, support.method = c("user", "adaptive")[2], cluster = cluster)
	# semi-analytic (FFT based)
	np = nportmoments(cf, trace=1)
	postscript("test1e1.eps", width = 8, height = 12)
	par(mfrow = c(2,2))
	plot(gp[1:1000,1], type = "p", main = "Portfolio Mean", minor.ticks=FALSE, auto.grid=FALSE)
	points(np[1:1000,1], col = 2, pch = 4)
	legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"), col = 1:2, pch = c(1,4), bty="n")

	plot(gp[1:1000,2], type = "o", main = "Portfolio Sigma", minor.ticks=FALSE, auto.grid=FALSE)
	lines(np[1:1000,2], col = 2)
	legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"), col = 1:2, fill=1:2, bty="n")
	# simply decrease the fft.step to obtain more accurate results (at the expense of memory)
	plot(gp[1:1000,3], type = "o", main = "Portfolio Skewness", minor.ticks=FALSE, auto.grid=FALSE)
	lines(np[1:1000,3], col = 2)
	legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"), col = 1:2, fill=1:2, bty="n")

	plot(gp[1:1000,4], type = "o", main = "Portfolio Kurtosis", minor.ticks=FALSE, auto.grid=FALSE)
	lines(np[1:1000,4], col = 2)
	legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"), col = 1:2, fill=1:2, bty="n")

	dev.off()

	# make a quantile graph of the weighted returns
	postscript("test1e2.eps", width = 8, height = 12)
	par(mfrow = c(2,2))
	qf = qfft(cf, index = 5521)
	plot(seq(0.01, 0.99, by = 0.005), qf(seq(0.01, 0.99, by = 0.005)), type = "l", main = "Portfolio Quantile\nObs=5521",
			xlab = "Value", ylab = "Probability")
	lines(seq(0.01, 0.99, by = 0.005), qnorm(seq(0.01, 0.99, by = 0.005), gp[5521,1], gp[5521,2]), col = 2)
	legend("topleft", legend = c("FFT Portfolio", "Gaussian Portfolio"), col =  1:2, fill = 1:2, bty = "n")

	df = dfft(cf, index = 4823)
	plot(seq(-0.3, 0.3, by = 0.005), df(seq(-0.3, 0.3, by = 0.005)), type = "l", main = "Portfolio Density",
			xlab = "Value", ylab = "pdf")
	lines(seq(-0.3, 0.3, by = 0.005), dnorm(seq(-0.3, 0.3, by = 0.005), gp[4823,1], gp[4823,2]), col = 2)
	legend("topleft", legend = c("FFT Portfolio", "Gaussian Portfolio"), col =  1:2, fill = 1:2, bty = "n")
	# Inverse transform sampling
	rf = qfft(cf, index = 5519)
	rfx = runif(50000)
	sx = rf(rfx)
	plot(density(sx), type = "l",  main = "Sampled Portfolio Density",
			xlab = "Value", ylab = "pdf")
	lines(density(qnorm(rfx, gp[5519,1], gp[5519,2])), col  = 2)
	legend("topleft", legend = c("FFT Portfolio", "Gaussian Portfolio"), col =  1:2, fill = 1:2, bty = "n")
	dev.off()

	qseq = seq(0.01, 0.99, by = 0.005)
	# Make a quantile surface
	qsurface = matrix(NA, ncol = length(qseq), nrow = 5521)
	for(i in 1:5521){
		qf = qfft(cf, index = i)
		qsurface[i,] = qf(qseq)
	}
	png("test1e3.png", width = 800, height = 1200, res = 100)
	par(mar=c(1.8,1.8,1.1,1), pty = "m")
	x1 = shape::drapecol(qsurface, col = shape::femmecol(100), NAcol = "white")
	persp(  x = 1:5521,
			y = qseq,
			z = qsurface,  col = x1, theta = 45, phi = 25, expand = 0.5,
			ltheta = 120, shade = 0.75, ticktype = "simple", xlab = "Time",
			ylab = "Quantile", zlab = "Value",cex.axis = 0.8)
	dev.off()

	png("test1e4.png", width = 800, height = 1200, res = 100)
	ni = nisurface(fit, type = "cor", pair = c(1,3), factor = c(2,3), plot = TRUE)
	dev.off()

	toc = Sys.time()-tic
	cat("Elapsed:", toc, "\n")
	return(toc)
}

# NIG filter and test all methods
rmgarch.test1f = function(cluster = NULL)
{

	tic = Sys.time()
	data(dji30ret)
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1),
					submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[2],
			ica = c("fastica", "radical")[1])
	fit = gogarchfit(spec, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0, cluster = cluster)
	filt = gogarchfilter(fit, data =  dji30ret[,1:3,drop=FALSE], out.sample = 0)
	options(width = 120)
	zz <- file("test1f.txt", open="wt")
	sink(zz)
	print(likelihood(filt))
	cat("\n")
	print(as.matrix(filt, which = "A"))
	cat("\n")
	print(as.matrix(filt, which = "K"))
	cat("\n")
	print(as.matrix(filt, which = "U"))
	cat("\n")
	print(head(fitted(filt)))
	cat("\n")
	print(head(residuals(filt)))
	cat("\n")
	print(rcov(filt)[,,1])
	cat("\n")
	print(rcor(filt)[,,1])
	cat("\n")
	print(rcoskew(filt, from=1, to=2))
	print(rcokurt(filt, from=1, to=2))
	cat("\n")
	sink(type="message")
	sink()
	close(zz)

	# Geometric Portfolio Moments
	gp = gportmoments(filt, weights = rep(1/3,3))
	# head(gp)
	cf = convolution(filt, weights = rep(1/3,3), fft.step = 0.001,
			fft.by = 0.0001, fft.support = c(-1, 1), use.ff = TRUE,
			support.method = c("user", "adaptive")[2], cluster = cluster)
	# semi-analytic (FFT based)
	np = nportmoments(cf)
	postscript("test1f1.eps", width = 8, height = 12)
	par(mfrow = c(2,2))
	plot(gp[1:1000,1], type = "p", main = "Portfolio Mean", minor.ticks=FALSE, auto.grid=FALSE)
	points(np[1:1000,1], col = 2, pch = 4)
	legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"),
			col = 1:2, pch = c(1,4), bty="n")

	plot(gp[1:1000,2], type = "l", main = "Portfolio Sigma", minor.ticks=FALSE, auto.grid=FALSE)
	lines(np[1:1000,2], col = 2)
	legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"),
			col = 1:2, fill=1:2, bty="n")
	# simply decrease the fft.step to obtain more accurate results
	# (at the expense of memory)
	plot(gp[1:1000,3], type = "l", main = "Portfolio Skewness", minor.ticks=FALSE, auto.grid=FALSE)
	lines(np[1:1000,3], col = 2)
	legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"),
			col = 1:2, fill=1:2, bty="n")

	plot(gp[1:1000,4], type = "l", main = "Portfolio Kurtosis", minor.ticks=FALSE, auto.grid=FALSE)
	lines(np[1:1000,4], col = 2)
	legend("topleft", legend = c("Geometric", "Semi-Analytic (FFT)"),
			col = 1:2, fill=1:2, bty="n")
	dev.off()

	# make a quantile graph of the weighted returns
	postscript("test1f2.eps", width = 8, height = 12)
	par(mfrow = c(2,2))
	qf = qfft(cf, index = 5521)
	plot(seq(0.01, 0.99, by = 0.005), qf(seq(0.01, 0.99, by = 0.005)),
			type = "l", main = "Portfolio Quantile\nObs=5521", xlab = "Value",
			ylab = "Probability")
	lines(seq(0.01, 0.99, by = 0.005), qnorm(seq(0.01, 0.99, by = 0.005),
					gp[5521,1], gp[5521,2]), col = 2)
	legend("topleft", legend = c("FFT Portfolio", "Gaussian Portfolio"),
			col =  1:2, fill = 1:2, bty = "n")

	df = dfft(cf, index = 4823)
	plot(seq(-0.3, 0.3, by = 0.005), df(seq(-0.3, 0.3, by = 0.005)), type = "l",
			main = "Portfolio Density", xlab = "Value", ylab = "pdf")
	lines(seq(-0.3, 0.3, by = 0.005), dnorm(seq(-0.3, 0.3, by = 0.005),
					gp[4823,1], gp[4823,2]), col = 2)
	legend("topleft", legend = c("FFT Portfolio", "Gaussian Portfolio"),
			col =  1:2, fill = 1:2, bty = "n")
	# Inverse transform sampling
	rf = qfft(cf, index = 5521)
	rfx = runif(50000)
	sx = rf(rfx)
	plot(density(sx), type = "l",  main = "Sampled Portfolio Density",
			xlab = "Value", ylab = "pdf")
	lines(density(qnorm(rfx, gp[5521,1], gp[5521,2])), col  = 2)
	legend("topleft", legend = c("FFT Portfolio", "Gaussian Portfolio"),
			col =  1:2, fill = 1:2, bty = "n")

	dev.off()

	qseq = seq(0.01, 0.99, by = 0.005)
	# Make a quantile surface
	qsurface = matrix(NA, ncol = length(qseq), nrow = 5521)
	for(i in 1:5521){
		qf = qfft(cf, index = i)
		qsurface[i,] = qf(qseq)
	}
	png("test1f3.png", width = 800, height = 1200, res = 100)
	par(mar=c(1.8,1.8,1.1,1), pty = "m")
	x1 = shape::drapecol(qsurface, col = shape::femmecol(100), NAcol = "white")
	persp(  x = 1:5521,
			y = qseq,
			z = qsurface,  col = x1, theta = 45, phi = 25, expand = 0.5,
			ltheta = 120, shade = 0.75, ticktype = "simple", xlab = "Time",
			ylab = "Quantile", zlab = "Value",cex.axis = 0.8)
	dev.off()

	png("test1f4.png", width = 800, height = 1200, res = 100)
	ni = nisurface(filt, type = "cor", pair = c(2,3), factor = c(1,3), plot = TRUE)
	dev.off()

	toc = Sys.time()-tic
	cat("Elapsed:", toc, "\n")
	return(toc)

}

# Out of sample methods and forecasting
rmgarch.test1g = function(cluster = NULL)
{
	tic = Sys.time()
	data(dji30ret)
	cnames = colnames(dji30ret)
	# ToDo: Investigate possible problem with variance targeting and eGARCH model
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[1], lag = 2,
					lag.max = 6),
			variance.model = list(model = "sGARCH", submodel = "NULL",
					garchOrder = c(1,1), variance.targeting = TRUE),
			distribution.model = c("mvnorm", "manig", "magh")[2],
			ica = c("fastica", "radical")[1])
	fit = gogarchfit(spec, data = dji30ret[,1:5,drop=FALSE], out.sample = 500,
			cluster = cluster, gfun="tanh", maxiter1=25000)

	filt = gogarchfilter(fit, data = dji30ret[,1:5,drop=FALSE], out.sample = 500,
			cluster = cluster)

	filt2 = gogarchfilter(fit, data = dji30ret[,1:5,drop=FALSE], n.old = 5521-500,
			cluster = cluster)

	forc.1 = gogarchforecast(fit, n.ahead = 500, cluster = cluster)
	forc.2 = gogarchforecast(fit, n.ahead = 1, n.roll = 499, cluster = cluster)


	zz <- file("test1g-1.txt", open="wt")
	sink(zz)
	cat("\nFilter/Forecast Roll Check:\n")
	print(all.equal(matrix(rmgarch::last(fitted(forc.2), 1), nrow=1), matrix(as.numeric(tail(fitted(filt2), 1)), nrow=1)))
	print(round(rcor(forc.2)[[500]][,,1], 5) == round(rmgarch::last(rcor(filt2))[,,1],5))
	print(matrix(rmgarch::last(sigma(forc.2, factors=FALSE), 1), nrow=1) - as.matrix(tail(sigma(filt2, factors=FALSE), 1)))
	print(matrix(rmgarch::first(sigma(forc.2, factors=FALSE), 1), nrow=1) - as.matrix(sigma(filt2, factors=FALSE)[5521-500+1,]))
	sink(type="message")
	sink()
	close(zz)


	rc1 = rcor(forc.1)[[1]]
	rc2 = rcor(forc.2)

	postscript("test1g1.eps", width = 12, height = 12)
	par(mfrow = c(2,2))
	D = tail(fit@model$modeldata$index, 500)
	plot(xts::xts(sapply(rc2, function(x) x[1,2,1]),D),
			main = paste("Correlation Forecast\n", cnames[1],"-",
					cnames[2], sep = ""), ylab = "Correlation", xlab = "Time",
			minor.ticks = FALSE, auto.grid = FALSE)
	lines(xts::xts(rc1[1,2,], D), col = 2 )
	legend("topright", legend = c("Rolling", "Unconditional"),
			col  =1:2, fill = 1:2, bty = "n")

	plot(xts::xts(sapply(rc2, function(x) x[1,3,1]), D), type = "l",
			main = paste("Correlation Forecast\n", cnames[1],"-",
					cnames[3], sep = ""), ylab = "Correlation", xlab = "Time",
			minor.ticks = FALSE, auto.grid = FALSE)
	lines(xts::xts(rc1[1,3,], D), col = 2 )
	legend("topright", legend = c("Rolling", "Unconditional"),
			col  =1:2, fill = 1:2, bty = "n")

	plot(xts::xts(sapply(rc2, function(x) x[2,3,1]), D), type = "l",
			main = paste("Correlation Forecast\n", cnames[2],"-",
					cnames[3], sep = ""), ylab = "Correlation", xlab = "Time",
			minor.ticks = FALSE, auto.grid = FALSE)
	lines(xts::xts(rc1[2,3,], D), col = 2 )
	legend("topright", legend = c("Rolling", "Unconditional"),
			col  =1:2, fill = 1:2, bty = "n")
	dev.off()

	gp1 = gportmoments(forc.1, weights = rep(1/5,5))
	gp2 = gportmoments(forc.2, weights = rep(1/5,5))

	postscript("test1g2.eps", width = 12, height = 12)
	par(mfrow = c(2,1))
	D = tail(fit@model$modeldata$index, 500)

	plot(xts::xts(tail(apply(fit@model$modeldata$data,1,"mean"), 500), D),
			main = paste("Portfolio Return Forecast"), ylab = "returns",
			xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
	lines(xts::xts(gp2[,"mu", ], D), col = 2 )
	lines(xts::xts(gp1[,"mu",1], D), col = 3 )
	legend("topright", legend = c("Actual", "Rolling", "Unconditional"),
			col  = 1:3, fill = 1:3, bty = "n")

	plot(xts::xts(sqrt(tail(apply(fit@model$modeldata$data^2,1,"mean"), 500)), D),
			main = paste("Portfolio Sigma Forecast"), ylab = "sigma",
			xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
	lines(xts::xts(gp2[,"sigma", ], D), col = 2 )
	lines(xts::xts(gp1[,"sigma",1], D), col = 3 )
	legend("topright", legend = c("Abs Returns", "Rolling", "Unconditional"),
			col  = 1:3, fill = 1:3, bty = "n")
	dev.off()

	cf1 = convolution(forc.1,  weights = rep(1/5,5), fft.step = 0.001,
			fft.by = 0.0001, fft.support = c(-1, 1),
			use.ff = TRUE, trace = 0, support.method = c("user", "adaptive")[1],
			cluster = cluster)

	cf2 = convolution(forc.2,  weights = rep(1/5,5), fft.step = 0.001,
			fft.by = 0.0001, fft.support = c(-1, 1),
			use.ff = TRUE, trace = 0, support.method = c("user", "adaptive")[1],
			cluster = cluster)

	np1 = nportmoments(cf1, subdivisions = 400)
	np2 = nportmoments(cf2, subdivisions = 400)
	postscript("test1g3.eps", width = 12, height = 12)
	par(mfrow = c(2,2))
	plot(xts::xts(gp2[,"mu",], D), main = paste("Portfolio Return Forecast"), ylab = "returns",
			xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
	lines(xts::xts(np2[,"mu",], D), col = 2 )
	legend("topright", legend = c("Geometric", "Semi-Analytic(FFT)"),
			col  = 1:2, fill = 1:2, bty = "n")

	plot(xts::xts(gp2[,"sigma",], D), main = paste("Portfolio Sigma Forecast"), ylab = "sigma",
			xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
	lines(xts::xts(np2[,"sigma",], D), col = 2 )
	legend("topright", legend = c("Geometric", "Semi-Analytic(FFT)"),
			col  = 1:2, fill = 1:2, bty = "n")

	plot(xts::xts(gp2[,"skewness",], D), main = paste("Portfolio Skew Forecast"), ylab = "skewness",
			xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
	lines(xts::xts(np2[,"skewness",], D), col = 2 )

	plot(xts::xts(gp2[,"kurtosis",], D), main = paste("Portfolio Kurtosis Forecast"), ylab = "skewness",
			xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
	lines(xts::xts(np2[,"kurtosis",], D), col = 2 )
	legend("topright", legend = c("Geometric", "Semi-Analytic(FFT)"),
			col  = 1:2, fill = 1:2, bty = "n")

	dev.off()

	# Rolling forecast VaR and Tests (don't expect much...500 days without re-estimation
    # is not likely to give good VaR estimates).
	VaR = matrix(NA, ncol = 2, nrow = 500)
	for(i in 0:499){
		qx = qfft(cf2, index = i)
		VaR[i+1,1:2] = qx(c(0.01, 0.05))
	}

	postscript("test1g4.eps", width = 12, height = 12)
	par(mfrow = c(2,1))
	VaRplot(0.01, actual = xts::xts(tail(apply(fit@model$modeldata$data,1,"mean"), 500),D),
			VaR = xts::xts(VaR[,1], D))
	VaRplot(0.05, actual = xts::xts(tail(apply(fit@model$modeldata$data,1,"mean"), 500),D),
			VaR = xts::xts(VaR[,2], D))
	dev.off()

	zz <- file("test1g-2.txt", open="wt")
	sink(zz)
	cat("\nGOGARCH VaR:\n")
	print(VaRTest(0.01, actual = tail(apply(fit@model$modeldata$data,1,"mean"), 500),
			VaR = VaR[,1]))
	print(VaRTest(0.05, actual = tail(apply(fit@model$modeldata$data,1,"mean"), 500),
			VaR = VaR[,2]))
	sink(type="message")
	sink()
	close(zz)

	toc = Sys.time()-tic
	cat("Elapsed:", toc, "\n")
	return(toc)
}


# Rolling Estimation
rmgarch.test1h = function(cluster = NULL)
{
	tic = Sys.time()
	data(dji30retw)
	cnames = colnames(dji30retw)
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[3],
					lag = 2),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1),
					variance.targeting = TRUE),
			distribution.model = c("mvnorm", "manig", "magh")[2],
			ica = c("fastica", "radical")[1])
	# to replicate the results set the rseed for initializing the fastica
	# algorithm
	roll = gogarchroll(spec, data = dji30retw[,1:10,drop=FALSE], n.ahead = 1,
			forecast.length = 500, refit.every = 20,
			refit.window = c("recursive", "moving")[1],
			cluster = cluster, gfun = "tanh", maxiter1=50000, rseed = 10)


	cf = convolution(roll,  weights = rep(1/10,10), fft.step = 0.001,
			fft.by = 0.0001, fft.support = c(-1, 1),
			use.ff = FALSE, trace = 0, support.method = c("user", "adaptive")[1],
			cluster = cluster)

	VaR = matrix(NA, ncol = 2, nrow = 500)
	for(i in 0:499){
		qx = qfft(cf, index = i)
		VaR[i+1,1:2] = qx(c(0.01, 0.05))
	}

	postscript("test1h1.eps", width = 12, height = 12)
	par(mfrow =  c(2,1))
	D =  as.POSIXct(tail(rownames(dji30retw), 500))
	Y = tail(apply(dji30retw[,1:10],1,"mean"), 500)
	VaRplot(0.01, actual = xts::xts(Y, D), VaR = xts::xts(VaR[,1], D))
	VaRplot(0.05, actual = xts::xts(Y, D), VaR = xts::xts(VaR[,2], D))
	dev.off()

	zz <- file("test1h-1.txt", open="wt")
	sink(zz)
	cat("\nGOGARCH Rolling Estimation VaR:\n")
	print(VaRTest(0.01, actual = tail(apply(dji30retw[,1:10],1,"mean"), 500),
			VaR = VaR[,1]))
	print(VaRTest(0.05, actual = tail(apply(dji30retw[,1:10],1,"mean"), 500),
			VaR = VaR[,2]))
	sink(type="message")
	sink()
	close(zz)

	zz <- file("test1h-2.txt", open="wt")
	sink(zz)
	cat("\nGOGARCH Rolling Methods:\n")
	# Check methods on roll:
	print(head(sigma(roll)))
	print(rcor(roll)[,,1,drop=FALSE])
	print(rcov(roll)[,,1,drop=FALSE])
	print(rcoskew(roll)[,,1])
	print(rcokurt(roll)[,,1])
	sink(type="message")
	sink()
	close(zz)

	# other methods
	gp = gportmoments(roll, rep(1/10,10))
	np = nportmoments(cf)
	D = as.POSIXct(rownames(tail(dji30retw, 500)))
	postscript("test1h2.eps", width = 12, height = 12)
	par(mfrow = c(2,2))
	plot(xts::xts(gp[,"mu"], D), main = paste("Portfolio Return Forecast"), ylab = "returns",
			xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
	lines(xts::xts(np[,"mu"], D), col = 2 )
	legend("topright", legend = c("Geometric", "Semi-Analytic(FFT)"),
			col  = 1:2, fill = 1:2, bty = "n")

	plot(xts::xts(gp[,"sigma"], D), main = paste("Portfolio Sigma Forecast"), ylab = "sigma",
			xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
	lines(xts::xts(np[,"sigma"], D), col = 2 )
	legend("topright", legend = c("Geometric", "Semi-Analytic(FFT)"),
			col  = 1:2, fill = 1:2, bty = "n")

	plot(xts::xts(gp[,"skewness"], D), main = paste("Portfolio Skew Forecast"), ylab = "skewness",
			xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
	lines(xts::xts(np[,"skewness"], D), col = 2 )

	plot(xts::xts(gp[,"kurtosis"], D), main = paste("Portfolio Kurtosis Forecast"), ylab = "skewness",
			xlab = "Time", minor.ticks = FALSE, auto.grid = FALSE)
	lines(xts::xts(np[,"kurtosis"], D), col = 2 )
	legend("topright", legend = c("Geometric", "Semi-Analytic(FFT)"),
			col  = 1:2, fill = 1:2, bty = "n")
	dev.off()


	toc = Sys.time()-tic
	cat("Elapsed:", toc, "\n")
	return(toc)
}

# moment tests
rmgarch.test1i = function(cluster = NULL)
{
	tic = Sys.time()
	data(dji30ret)
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[1], lag = 3),
			variance.model = list(model = "gjrGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[2], ica = c("fastica", "radical")[1])
	fit = gogarchfit(spec, data =  dji30ret[,1:5,drop=FALSE], out.sample = 0,
			cluster = cluster, gfun = "tanh", maxiter1 = 20000, rseed = 12)
	forc = gogarchforecast(fit, n.ahead = 1)
	w = matrix(rep(1/5,5), ncol = 5)
	# Geometric (Analytical Moments by Linear Affine Transformation)
	gm = gportmoments(forc, weights = w)
	# equivalent to:
	sk = w%*%rcoskew(forc, standardize = FALSE)[,,1]%*%kronecker(t(w),t(w))/gportmoments(forc, weights = w)[1,2,1]^3
	ku = w%*%rcokurt(forc, standardize = FALSE)[,,1]%*%kronecker(t(w), kronecker(t(w),t(w)))/gportmoments(forc, weights = w)[1,2,1]^4
	# Numeric (Semi-Analytic by convolution of densities)
	cf = convolution(forc, weights = w)
	nm = nportmoments(cf, weights = w)
	# equivalent to:
	df = dfft(cf, index=0)
	m1 = gm[1,1,1]
	f = function(x) (x-m1)^4*df(x)
	nme = integrate(f, -Inf, Inf, rel.tol=1e-9, stop.on.error=FALSE)$value/gm[1,2,1]^4

	zz <- file("test1i.txt", open="wt")
	sink(zz)
	cat("\nGOGARCH Forecast Weighted Kurtosis Differences in Methods:\n")
	print(all.equal(gm[1,4,1], nme))
	print(all.equal(as.numeric(nm[1,4,1]), nme))
	print(all.equal(as.numeric(nm[1,4,1]), gm[1,4,1]))
	print(all.equal(as.numeric(sk), gm[1,3,1]))
	print(all.equal(as.numeric(ku), gm[1,4,1]))

	sink(type="message")
	sink()
	close(zz)

	toc = Sys.time()-tic
	cat("Elapsed:", toc, "\n")
	return(toc)
}

# some simulated forecast tests based on new functionality to gogarchsim version 0.96
rmgarch.test1j = function(cluster = NULL)
{

	tic = Sys.time()
	data(dji30ret)
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2),
			variance.model = list(model = "sGARCH", garchOrder = c(1,1)),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])

	fit = gogarchfit(spec = spec, data = dji30ret[1:1010,1:3], out.sample = 10, solver = "solnp",
			gfun = "tanh", maxiter1 = 20000, rseed = 25)

	forc = gogarchforecast(fit, n.ahead = 1, n.roll = 10)
	fc = matrix(fitted(forc), ncol = 3, nrow=11, byrow=TRUE)
	# max lag for mean.model = 2
	p = fit@model$modelinc[2]
	simM = matrix(NA, ncol = 3, nrow = 11)
	filt = gogarchfilter(fit, data = dji30ret[1:1010,1:3], out.sample = 0, n.old = 1000)
	# T + 1 -> T + 11
	# since version 1.00 all data returned is of the same size as the dataset (i.e. not
	# truncated for any lags). This follows a subtle change in the initialization of the
	# arfima recursion which is now set to the constan/mean for the first p AR lags and
	# so the residuals are not zero, which means that the standardized residuals can be
	# calculated.
	T = fit@model$modeldata$T
	for(i in 1:11){
		preres = fit@mfit$Y[(T-p+i):(T-1+i),]
		presigma = filt@mfilter$factor.sigmas[(T-p+i):(T-1+i),]
		prereturns = fit@model$modeldata$data[(T-p+i):(T-1+i),,drop=FALSE]
		sim = gogarchsim(fit, n.sim = 1, m.sim = 500, startMethod = "sample",
				preres = preres, presigma = presigma, prereturns = prereturns)
		simx = t(sapply(sim@msim$seriesSim, FUN = function(x) x))
		simres = t(sapply(sim@msim$residSim, FUN = function(x) x))
		# after removing the uncertainty we should get the forecast (fc)
		simM[i, ] = simx[1,] - simres[1,]
	}

	zz <- file("test1j1.txt", open="wt")
	sink(zz)
	cat("\nAR-GOGARCH Rolling Forecast vs Rolling Simulation Check:\n")
	print(all.equal(simM, fc))
	sink(type="message")
	sink()
	close(zz)

	# use VAR

	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[3], lag = 2),
			variance.model = list(model = "sGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])

	fit = gogarchfit(spec = spec, data = dji30ret[1:1010,1:3], out.sample = 10, solver = "solnp",
			gfun = "tanh", maxiter1 = 20000, rseed = 25)

	forc = gogarchforecast(fit, n.ahead = 1, n.roll = 10)
	fc = matrix(fitted(forc), ncol = 3, nrow=11, byrow=TRUE)
	# max lag for mean.model = 2
	p = fit@model$modelinc[3]
	simM = matrix(NA, ncol = 3, nrow = 11)
	filt = gogarchfilter(fit, data = dji30ret[1:1010,1:3], out.sample = 0, n.old = 1000)
	# T + 1 -> T + 11
	T = fit@model$modeldata$T
	for(i in 1:11){
		preres = fit@mfit$Y[(T-p+i):(T-1+i),]
		presigma = filt@mfilter$factor.sigmas[(T-p+i):(T-1+i),]
		prereturns = fit@model$modeldata$data[(T-p+i):(T-1+i),,drop=FALSE]
		sim = gogarchsim(fit, n.sim = 1, m.sim = 100, startMethod = "sample",
				preres = preres, presigma = presigma, prereturns = prereturns)
		simx = t(sapply(sim@msim$seriesSim, FUN = function(x) x))
		simres = t(sapply(sim@msim$residSim, FUN = function(x) x))
		# after removing the uncertainty we should get the forecast (fc)
		simM[i, ] = simx[1,] - simres[1,]
	}

	zz <- file("test1j2.txt", open="wt")
	sink(zz)
	cat("\nVAR-GOGARCH Rolling Forecast vs Rolling Simulation Check:\n")
	print(all.equal(simM, fc))
	sink(type="message")
	sink()
	close(zz)


	##############################
	# One more test
	cnames = colnames(dji30ret[,1:3])
	spec = gogarchspec(
			mean.model = list(model = c("constant", "AR", "VAR")[2], lag = 2),
			variance.model = list(model = "sGARCH", garchOrder = c(1,1), submodel = NULL, variance.targeting = FALSE),
			distribution.model = c("mvnorm", "manig", "magh")[1], ica = c("fastica", "radical")[1])

	fit = gogarchfit(spec = spec, data = dji30ret[1:1010,1:3], out.sample = 10, solver = "solnp")

	forc = gogarchforecast(fit, n.ahead = 1, n.roll = 10)
	fc = matrix(fitted(forc), ncol = 3, nrow=11, byrow=TRUE)
	fs = matrix(sigma(forc, factors=FALSE), ncol = 3, nrow=11, byrow=TRUE)
	# max lag for mean.model = 2
	p = fit@model$modelinc[2]
	simX = vector(mode = "list", length = 11)
	filt = gogarchfilter(fit, data = dji30ret[1:1010,1:3], out.sample = 0, n.old = 1000)
	# T + 1 -> T + 11
	T = fit@model$modeldata$T
	for(i in 1:11){
		preres = fit@mfit$Y[(T-p+i):(T-1+i),]
		presigma = filt@mfilter$factor.sigmas[(T-p+i):(T-1+i),]
		prereturns = fit@model$modeldata$data[(T-p+i):(T-1+i),,drop=FALSE]
		sim = gogarchsim(fit, n.sim = 1, m.sim = 500, startMethod = "sample",
				preres = preres, presigma = presigma, prereturns = prereturns)
		# after removing the uncertainty we should get the forecast (fc)
		simX[[i]] = t(sapply(sim@msim$seriesSim, FUN = function(x) x))
	}
	simM = t(sapply(simX, FUN = function(x) colMeans(x)))
	simS = t(sapply(simX, FUN = function(x) apply(x, 2, "sd")))

	postscript("test1j.eps", width = 12, height = 12)
	par(mfrow=c(2,2))
	boxplot(simX[[1]], main = "T+1", names = cnames)
	points(fc[1,], col = 3, lwd = 4, pch  =12)
	points(simM[1,], col = 2, lwd = 2, pch = 10)
	points(fc[1,]+3*fs[1,], col = 4, lwd = 2, pch = 14)
	points(fc[1,]-3*fs[1,], col = 4, lwd = 2, pch = 14)
	legend("bottomleft", c("Mean[sim]", "Mean[forc]", "3sd"), col = c(2,3,4), pch=c(10,12,14),
			bty="n", lwd=c(2,4,2), cex=0.7)

	boxplot(simX[[4]], main = "T+4", names = cnames)
	points(fc[4,], col = 3, lwd = 4, pch  =12)
	points(simM[4,], col = 2, lwd = 2, pch = 10)
	points(fc[4,]+3*fs[4,], col = 4, lwd = 2, pch = 14)
	points(fc[4,]-3*fs[4,], col = 4, lwd = 2, pch = 14)
	legend("bottomleft", c("Mean[sim]", "Mean[forc]", "3sd"), col = c(2,3,4), pch=c(10,12,14),
			bty="n", lwd=c(2,4,2), cex=0.7)

	boxplot(simX[[6]], main = "T+6", names = cnames)
	points(fc[6,], col = 3, lwd = 4, pch  =12)
	points(simM[6,], col = 2, lwd = 2, pch = 10)
	points(fc[6,]+3*fs[6,], col = 4, lwd = 2, pch = 14)
	points(fc[6,]-3*fs[6,], col = 4, lwd = 2, pch = 14)
	legend("bottomleft", c("Mean[sim]", "Mean[forc]", "3sd"), col = c(2,3,4), pch=c(10,12,14),
			bty="n", lwd=c(2,4,2), cex=0.7)

	boxplot(simX[[11]], main = "T+11", names = cnames)
	points(fc[11,], col = 3, lwd = 4, pch  =12)
	points(simM[11,], col = 2, lwd = 2, pch = 10)
	points(fc[11,]+3*fs[11,], col = 4, lwd = 2, pch = 14)
	points(fc[11,]-3*fs[11,], col = 4, lwd = 2, pch = 14)
	legend("bottomleft", c("Mean[sim]", "Mean[forc]", "3sd"), col = c(2,3,4), pch=c(10,12,14),
			bty="n", lwd=c(2,4,2), cex=0.7)

	dev.off()


	# ToDo: Test nportmoments and gportmoments on goGARCHsim

	toc = Sys.time()-tic
	cat("Elapsed:", toc, "\n")
	return(toc)
}
mcremene/changedRmgarch2 documentation built on Feb. 5, 2021, 12:46 a.m.