R/plotting.r

Defines functions histospark mcmcpairs mcmcpairs_old shade segmentsby arrowspline simplehist_old simplehist show.naive.posterior plot2y image_xyz contour_xyz bins dens make.grid goCaslonPro blank2 blank set_nice_margins lines_xkcd lines_w

Documented in blank contour_xyz dens image_xyz make.grid mcmcpairs plot2y segmentsby set_nice_margins shade show.naive.posterior simplehist

# plotting

lines_w <- function( x , y , lwd=2 , owd=3 , alpha=1 , col=1 , ... ) {
    lines( x , y , lwd=lwd+owd , col=col.alpha("white",alpha) )
    lines( x , y , lwd=lwd , col=col.alpha(col,alpha) , ... )
}

lines_xkcd <- function( x , y , col="black" , lwd=5 , lwdbg=10 , adj=500 , seg=50 ) {
    len <- length(x);
    if ( len==2 ) {
        # segment single line so there will be some jigger
        x_new <- seq( from=x[1] , to=x[2] , length.out=seg )
        y_new <- seq( from=y[1] , to=y[2] , length.out=seg )
        x <- x_new
        y <- y_new
        len <- length(x)
    }
    rg <- par("usr");
    yjitter <- (rg[4] - rg[3]) / adj;
    xjitter <- (rg[2] - rg[1]) / adj;
    x_mod <- x + rnorm(len) * xjitter;
    y_mod <- y + rnorm(len) * yjitter;
    if ( lwdbg > 0 ) lines(x_mod, y_mod, col='white', lwd=lwdbg );
    lines(x_mod, y_mod, col=col, lwd=lwd );
}

# plot( NULL , xlim=c(0,1), ylim=c(0,1) )
# xkcd_line( c(0,1) , c(0,1) )
 
set_nice_margins <- function() {
    par_mf <- par("mfrow","mfcol")
    if ( all(unlist(par_mf)==1) ) {
        #par_old <- par(no.readonly = TRUE)
        #on.exit(par(par_old))
        par(mgp = c(1.5, 0.5, 0), mar = c(2.5, 2.5, 2, 1) + 0.1, tck = -0.02)
    }
}

# default quartz plot size for book: 3.5in by 4in, giving square plot for default margins
blank <- function(ex=1,w=1,h=1,...) {
    quartz("myquartz",width=3.5*ex*w,height=3.5*ex*h)
    par(mgp = c(1.5, 0.5, 0), mar = c(2.5, 2.5, 2, 1) + 0.1, tck = -0.02, ...)
}

blank2 <- function(ex=1,w=1,h=1,...) {
    quartz("myquartz",width=3.5*ex*w,height=3.5*ex*h)
    par(mgp = c(1.5, 0.5, 0), mar = c(2.5, 2.5, 2, 1) + 0.1, tck = -0.02, cex.axis=0.8, bty="l", ...)
}

# Set Caslon Pro as plotting typeface
goCaslonPro <- function() {
    quartzFonts(caslonpro = c("ACaslonPro-Regular", "ACaslonPro-Bold", "ACaslonPro-Italic", "ACaslonPro-BoldItalic"))
    par(family = "caslonpro")
}

# default pdf plot size, for making cmyk figures
# close file with dev.off() as usual
pdfblank <- function (ex = 1, w = 1, h = 1, colormodel="cmyk" , ... ) 
{
    pdf("mypdf.pdf", width = 3.5 * ex * w, height = 3.5 * ex * 
        h , colormodel=colormodel , ...)
    par(mgp = c(1.5, 0.5, 0), mar = c(2.5, 2.5, 2, 1) + 0.1, 
        tck = -0.02)
}

make.grid <- function( n ) {
    num.rows <- floor( sqrt(n) )
    num.cols <- ceiling(n/num.rows)
    c(num.rows,num.cols)
}

dens <- function( x , adj=0.5 , norm.comp=FALSE , main="" , show.HPDI=FALSE , show.zero=FALSE , rm.na=TRUE , add=FALSE , ...) {
    if ( inherits(x, "data.frame")) {
        # full posterior
        n <- ncol(x)
        cnames <- colnames(x)
        set_nice_margins()
        par( mfrow=make.grid(n) )
        for ( i in 1:n ) {
            dens( x[,i] , adj=adj , norm.comp=norm.comp , show.HPDI=show.HPDI , show.zero=TRUE , xlab=cnames[i] , ... )
        }
    } else {
        # vector
        if ( rm.na==TRUE ) x <- x[ !is.na(x) ]
        thed <- density(x,adjust=adj)
        if ( add==FALSE ) {
            set_nice_margins()
            plot( thed , main=main , ... )
        } else
            lines( thed$x , thed$y , ... )
        if ( show.HPDI != FALSE ) {
            hpd <- HPDI( x , prob=show.HPDI )
            shade( thed , hpd )
        }
        if ( norm.comp==TRUE ) {
            mu <- mean(x)
            sigma <- sd(x)
            curve( dnorm( x , mu , sigma ) , col="white" , lwd=2 , add=TRUE )
            curve( dnorm( x , mu , sigma ) , add=TRUE )
        }
        if ( show.zero==TRUE ) {
            lines( c(0,0) , c(0,max(thed$y)*2) , lty=2 )
        }
    }
}

# like dens, but uses bins and bars
bins <- function( x , n_bins=30 , rm.na=TRUE , ... ) {
    if ( rm.na==TRUE ) x <- x[ !is.na(x) ]
    cuts <- seq( from=min(x) , to=max(x) , length.out=n_bins )
    y <- cut( x , cuts )
    y <- table(y)
    names(y) <- round( cuts[1:(length(cuts)-1)] , 1 )
    plot( y , ylab="Frequency" , ... )
    invisible( y )
}

# just converts x,y,z lists of same length to a matrix for contour to plot
contour_xyz <- function( x , y , z , ... ) {
    ux <- unique(x)
    uy <- unique(y)
    n <- length(ux)
    m <- matrix( z , nrow=n , ncol=n )
    contour( ux , uy , m , ... )
}

# just converts inputs to form expected by image()
image_xyz <- function( x , y , z , ... ) {
    image( unique(x) , unique(y) , matrix(z, length(unique(x)), length(unique(y)) ) , ... )
}

# plot new y values on secondary y-axis on right side
plot2y <- function( ... , y2lab="2nd axis" , y2col=NULL ) {
    if ( is.null(y2col) ) y2col <- "black"
    par(new=TRUE)
    par(mar=c(5,4,4,5)+.1)
    plot( xaxt="n" , yaxt="n" , xlab="" , ylab="" , ... )
    axis( 4 , col=y2col , col.axis=y2col )
    mtext( y2lab , side=4 , line=3 , col=y2col )
}


# function for plotting "naive" posteriors and 95% confints
show.naive.posterior <- function( est , se , model=NULL , level=0.95 , xlab="estimate" , ylab="likelihood" , npts=1000 , ciy=NULL , show.density=TRUE , show.ci=TRUE , zero.lines=TRUE , label=NULL , cols=NULL , lwidths=NULL , ... ) {
    if ( !is.null(model) ) {
        f.found.class <- FALSE
        if ( class(model)=="lm" ) {
            f.found.class <- TRUE
            est <- coef(model)
            if ( is.null(label) ) label <- names(est)
            est <- as.vector(est)
            se <- as.vector(summary(model)$coefficients[,2])
        }
        if ( class(model)=="mle2" ) {
            f.found.class <- TRUE
            est <- coef(model)
            if ( is.null(label) ) label <- names(est)
            est <- as.vector(est)
            se <- as.vector(summary(model)@coef[,2])
        }
        if ( class(model)[1]=="mer" ) {
            f.found.class <- TRUE
            est <- fixef(model)
            if ( is.null(label) ) label <- names(est)
            est <- as.vector(est)
            se <- as.vector( sqrt( diag( vcov(model) ) ) )
        }
        if ( f.found.class==FALSE ) {
            return( paste("Could not find handler for model of class",class(model)) )
        }
    }
    minx <- min( est - se*3 )
    maxx <- max( est + se*3 )
    y <- matrix( 0 , nrow=length(est) , ncol=npts )
    ci <- matrix( 0 , nrow=length(est) , ncol=2 )
    tails <- (1-level)/2
    tails <- c( tails , 1-tails )
    x <- seq( from=minx , to=maxx , length=npts )
    for ( i in 1:nrow(y) ) {
        y[i,] <- dnorm( x , est[i] , se[i] )
        ci[i,] <- qnorm( tails , est[i] , se[i] )
    }
    maxy <- max( y )
    if ( is.null(ciy) ) ciy <- -maxy/10
    if ( show.ci==FALSE ) ciy <- 0
    yaxistype <-"s"
    if ( show.density==FALSE ) {
        maxy <- 0
        yaxistype <- "n"
        ylab=""
    }
    plot( 0 , 0 , type="n" , xlab=xlab , ylab=ylab , ylim=c(ciy,maxy) , xlim=c(minx,maxx) , yaxp=c(0,maxy,4) , yaxt=yaxistype , ... )
    if ( zero.lines==TRUE ) {
        if ( show.density==TRUE ) 
            lines( c(minx-abs(minx),maxx+abs(maxx)) , c(0,0) , lty=3 )
        lines( c(0,0) , c(-1,maxy*2) , lty=3 )
    }
    if ( is.null(cols) ) cols <- rep( "black" , length(est) )
    if ( is.null(lwidths) ) lwidths <- rep( 1 , length(est) )
    if ( show.density==TRUE ) {
        for ( i in 1:nrow(y) ) {
            lines( x , y[i,] , col=cols[i] , lwd=lwidths[i] , ... )
        }
    }
    yoff.ci <- rep(0,nrow(ci))
    if ( show.ci==TRUE ) {
        for ( i in 1:nrow(ci) ) {
            yoff.ci[i] <- ciy/(nrow(ci)+1)*i
            lines( ci[i,] , rep( yoff.ci[i] , 2 ) , col=cols[i] , lwd=lwidths[i] , ... )
            points( est[i] , yoff.ci[i] , col=cols[i] , lwd=lwidths[i] , ... )
        }
    }
    if ( !is.null(label) ) {
        xloc <- est
        yloc <- dnorm( xloc , xloc , se )
        yoff <- ifelse( yloc==max(yloc) , ciy/2 , -ciy/2 )
        yloc <- yloc + yoff
        if ( show.density==FALSE ) {
            yloc <- yoff.ci + 0.01
        }
        for ( i in 1:length(label) ) {
            text( xloc[i] , yloc[i] , labels=label[i] , col=cols[i] )
        }
    }
}

# simple histogram
simplehist <- function( x , round=TRUE , ylab="Frequency" , off=0.2 , lwd=3 , col=c("black",rangi2) , ... ) {
    if ( round==TRUE ) x <- round(x)
    if ( is.null(dim(x)) ) {
        y <- table(x)
        plot(y,ylab=ylab,lwd=lwd,col=col[1],...)
        return(invisible(y))
    } else {
        # show each column as different series of lines
        Y <- sapply( 1:ncol(x) , function(i) table(x[,i]) )
        if ( length(col) < ncol(x) ) col <- rep_len(col,ncol(x))
        plot(NULL,ylab=ylab, xlim=range(x)+c(-1,1)*off , ylim=c(0,max(Y)),...)
        for ( i in 1:ncol(x) ) {
            xoff <- (i-1)*off
            for ( j in 1:nrow(Y) ) lines( c(j,j)+xoff , c(0,Y[j,i]) , lwd=lwd , col=col[i] , ... )
        }
        return(invisible(Y))
    }
}

simplehist_old <- function( x , ylab="Frequency" , xlab="Count" , ycounts=TRUE , adjust=1 , lcol="black" , bins=NULL , show.counts=0 , xlim=NULL , ylim=NULL , ... ) {
    # first, check if integers only or continuous.
    freqs <- {}
    x2 <- round(x)
    iflag <- FALSE
    if ( all(x2==x) | !is.null(bins) ) {
        # integer dist, so plot each value
        if ( is.null(bins) ) {
            bins <- min(0,x):max(x)
        }
        freqs <- sapply( bins , function(z) length(x[x==z])/sum(x) )
        if ( ycounts==TRUE ) freqs <- sapply( bins , function(z) length( x[ as.character(x)==as.character(z) ] ) )
        iflag <- TRUE
    } else {
        # continuous dist (fractional values detected)
    }
    # plot frame
    if ( iflag==TRUE ) {
        # integers
        if ( is.null(ylim) )
            ylim <- c( 0 , max(freqs) )
        if ( is.null(xlim) )
            xlim <- c(min(bins),max(bins))
        set_nice_margins()
        plot( 0 ~ 0 , col="white" , xlim=xlim , ylim=ylim , ylab=ylab , xlab=xlab , ... )
        for ( i in 1:length(bins) ) {
            if ( freqs[i] > 0 )
                lines( c(bins[i],bins[i]) , c(0,freqs[i]) , col=lcol , ... )
        }
        # finally, show text counts for all bars with counts < show.counts
        if ( show.counts > 0 ) {
            for ( i in 1:length(bins) ) {
                if ( freqs[i] < show.counts )
                    text( bins[i] , freqs[i] , labels=freqs[i] , pos=3 )
            }
        }
    } else {
        # continuous
       if ( ylab=="Frequency" ) ylab <- "Density"
       if ( xlab=="Count" ) xlab <- "Value"
       set_nice_margins()
       plot( density( x , adjust=adjust ) , ylab=ylab , xlab=xlab , ... )
    }
    
}

####
# drawing functions

arrowspline <- function( from , to , by , shape=c(-1,-1,-1) , arrow=TRUE , arrowlen=0.1 , label=NULL , pos=3 , stem=4 , ... ) {
    if ( class(by)=="matrix" ) {
        # rows for points, col 1 for x, col 2 for y
        xby <- by[,1]
        yby <- by[,2]
    } else {
        xby <- by[1]
        yby <- by[2]
    }
    xs <- xspline( c( from[1] , xby , to[1] ) , c( from[2] , yby , to[2] ) , shape=shape , draw=FALSE )
    lines( xs$x , xs$y , ... )
    n <- length(xs$x)
    arrows( xs$x[n-stem] , xs$y[n-stem] , xs$x[n] , xs$y[n] , length=arrowlen , ... )
    if ( !is.null(label) ) text( xby[1] , yby[1] , label=label , pos=pos , ... )
}

segmentsby <- function( x , y , by , ... ) {
    byid <- unique( by )
    for ( i in byid ) {
        x0 <- x[ by==i ]
        y0 <- y[ by==i ]
        lines( x0 , y0 , ... )
    }
}

shade <- function( object , lim , label=NULL , col=col.alpha("black",0.15) , border=NA , ... ) {
    if ( missing(lim) ) stop( "Interval limits missing." )
    if ( missing(object) ) stop( "No density or formula object." )
    from <- lim[1]
    to <- lim[2]
    if ( class(object)[1]=="formula" ) {
        # formula input
        x1 <- eval( object[[3]] )
        y1 <- eval( object[[2]] )
        x <- x1[ x1>=from & x1<=to ]
        y <- y1[ x1>=from & x1<=to ]
    }
    if ( class(object)[1]=="density" ) {
        # density input
        x <- object$x[ object$x>=from & object$x<=to ]
        y <- object$y[ object$x>=from & object$x<=to ]
    }
    if ( class(object)[1]=="matrix" & length(dim(object))==2 ) {
        # matrix defining confidence region around a curve
        y <- c( object[1,] , object[2,][ncol(object):1] ) # reverse second row
        x <- c( lim , lim[length(lim):1] ) # lim needs to be x-axis values
    }
    # draw
    if ( class(object)[1]=="matrix" ) {
        polygon( x , y , col=col , border=border , ... )
    } else {
        polygon( c( x , to , from ) , c( y , 0 , 0 ) , col=col , border=border , ... )
    }
    # label?
    if ( !is.null(label) ) {
        lx <- mean(x)
        ly <- max(y)/2
        text( lx , ly , label )
    }
}

mcmcpairs_old <- function( posterior , cex=0.3 , pch=16 , col=col.alpha("slateblue",0.2) , n=1000 , adj=1 , ... ) {
    panel.dens <- function(x, ...) {
        usr <- par("usr"); on.exit(par(usr))
        par(usr = c(usr[1:2], 0, 1.5) )
        h <- density(x,adj=adj)
        y <- h$y
        y <- y/max(y)
        abline( v=0 , col="gray" , lwd=0.5 )
        lines( h$x , y )
    }
    panel.2d <- function( x , y , ... ) {
        i <- sample( 1:length(x) , size=n )
        abline( v=0 , col="gray" , lwd=0.5 )
        abline( h=0 , col="gray" , lwd=0.5 )
        points( x[i] , y[i] , ... )
    }
    panel.cor <- function( x , y , ... ) {
        k <- cor( x , y )
        cx <- sum(range(x))/2
        cy <- sum(range(y))/2
        text( cx , cy , round(k,2) , cex=2*exp(abs(k))/exp(1) )
    }
    set_nice_margins()
    pairs( posterior , cex=cex , pch=pch , col=col , upper.panel=panel.2d , lower.panel=panel.cor , diag.panel=panel.dens , ... )
}

mcmcpairs <- function( x , alpha=0.7 , cex=0.7 , pch=16 , adj=1 , pars , n=500 , ... ) {
    # x should be samples
    panel.dens <- function(x, ...) {
        usr <- par("usr"); on.exit(par(usr))
        par(usr = c(usr[1:2], 0, 1.5) )
        h <- density(x,adj=adj)
        y <- h$y
        y <- y/max(y)
        abline( v=0 , col="gray" , lwd=0.5 )
        lines( h$x , y )
    }
    panel.2d <- function( x , y , ... ) {
        i <- sample( 1:length(x) , size=n )
        abline( v=0 , col="gray" , lwd=0.5 )
        abline( h=0 , col="gray" , lwd=0.5 )
        dcols <- densCols( x[i] , y[i] )
        dcols <- sapply( dcols , function(k) col.alpha(k,alpha) )
        points( x[i] , y[i] , col=dcols , ... )
    }
    panel.cor <- function( x , y , ... ) {
        k <- cor( x , y )
        cx <- sum(range(x))/2
        cy <- sum(range(y))/2
        text( cx , cy , round(k,2) , cex=2*exp(abs(k))/exp(1) )
    }
    set_nice_margins()
    pairs( x , cex=cex , pch=pch , upper.panel=panel.2d , lower.panel=panel.cor , diag.panel=panel.dens , ... )
}

# wickham's histospark
# https://github.com/hadley/precis/blob/master/R/histospark.R
sparks <- c("\u2581", "\u2582", "\u2583", "\u2585", "\u2587")
histospark <- function(x, width = 10) {
  if ( all(is.na(x)) ) {
    return( paste0( rep(" ",width) , collapse="" ) )
  }
  bins <- graphics::hist(x, breaks = width, plot = FALSE)
  factor <- cut(
    bins$counts / max(bins$counts),
    breaks = seq(0, 1, length = length(sparks) + 1),
    labels = sparks,
    include.lowest = TRUE
  )
  paste0(factor, collapse = "")
}
rmcelreath/rethinking documentation built on Aug. 26, 2024, 5:54 p.m.