R/tab_create_modify.R

Defines functions tab_caption tab_source_note tab_stub_indent tab_stubhead tab_row_group str_split_across tab_spanner_delim resolve_spanned_column_names resolve_spanner_level tab_spanner tab_header

Documented in tab_caption tab_header tab_row_group tab_source_note tab_spanner tab_spanner_delim tab_stubhead tab_stub_indent

#------------------------------------------------------------------------------#
#
#                /$$
#               | $$
#     /$$$$$$  /$$$$$$
#    /$$__  $$|_  $$_/
#   | $$  \ $$  | $$
#   | $$  | $$  | $$ /$$
#   |  $$$$$$$  |  $$$$/
#    \____  $$   \___/
#    /$$  \ $$
#   |  $$$$$$/
#    \______/
#
#  This file is part of the 'rstudio/gt' project.
#
#  Copyright (c) 2018-2024 gt authors
#
#  For full copyright and license information, please look at
#  https://gt.rstudio.com/LICENSE.html
#
#------------------------------------------------------------------------------#


# tab_header() -----------------------------------------------------------------
#' Add a table header
#'
#' @description
#'
#' We can add a table header to the **gt** table with a title and even a
#' subtitle using `tab_header()`. A table header is an optional
#' table part that is positioned just above the column labels table part. We
#' have the flexibility to use Markdown or HTML formatting for the header's
#' title and subtitle with the [md()] and [html()] helper functions.
#'
#' @inheritParams fmt_number
#'
#' @param title *Header title*
#'
#'   `scalar<character>` // **required**
#'
#'   Text to be used in the table title. We can elect to use the [md()] and
#'   [html()] helper functions to style the text as Markdown or to retain HTML
#'   elements in the text.
#'
#' @param subtitle *Header subtitle*
#'
#'   `scalar<character>` // *default:* `NULL` (`optional`)
#'
#'   Text to be used in the table subtitle. We can elect to use [md()] or
#'    [html()] helper functions to style the text as Markdown or to retain HTML
#'   elements in the text.
#'
#' @param preheader *RTF preheader text*
#'
#'   `vector<character>` // *default:* `NULL` (`optional`)
#'
#'   Optional preheader content that is rendered above the table for RTF output.
#'   Can be supplied as a vector of text.
#'
#' @return An object of class `gt_tbl`.
#'
#' @section Examples:
#'
#' Let's use a small portion of the [`gtcars`] dataset to create a **gt** table.
#' A header part can be added to the table with the `tab_header()` function.
#' We'll add a title and the optional subtitle as well. With [md()], we can
#' make sure the Markdown formatting is interpreted and transformed.
#'
#' ```r
#' gtcars |>
#'   dplyr::select(mfr, model, msrp) |>
#'   dplyr::slice(1:5) |>
#'   gt() |>
#'   tab_header(
#'     title = md("Data listing from **gtcars**"),
#'     subtitle = md("`gtcars` is an R dataset")
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_header_1.png")`
#' }}
#'
#' If the table is intended solely as an HTML table, you could introduce your
#' own HTML elements into the header. You can even use the **htmltools** package
#' to help arrange and generate the HTML. Here's an example of that, where two
#' `<div>` elements are placed in a `htmltools::tagList()`.
#'
#' ```r
#' gtcars |>
#'   dplyr::select(mfr, model, msrp) |>
#'   dplyr::slice(1:5) |>
#'   gt() |>
#'   tab_header(
#'     title =
#'       htmltools::tagList(
#'         htmltools::tags$div(
#'           htmltools::HTML(
#'             web_image("https://www.r-project.org/logo/Rlogo.png")
#'           ),
#'           style = htmltools::css(`text-align` = "center")
#'         ),
#'         htmltools::tags$div(
#'           "Data listing from ", htmltools::tags$strong("gtcars")
#'         )
#'       )
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_header_2.png")`
#' }}
#'
#' If using HTML but doing something far simpler, we can wrap our title or
#' subtitle inside [html()] to declare that the text provided is HTML.
#'
#' ```r
#' gtcars |>
#'   dplyr::select(mfr, model, msrp) |>
#'   dplyr::slice(1:5) |>
#'   gt() |>
#'   tab_header(
#'     title = html("Data listing from <strong>gtcars</strong>"),
#'     subtitle = html("From <span style='color:red;'>gtcars</span>")
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_header_3.png")`
#' }}
#'
#' Sometimes, aligning the heading elements to the left can improve the
#' presentation of a table. Here, we use the [`nuclides`] dataset to generate a
#' display of natural abundance values for several stable isotopes.
#' [opt_align_table_header()] is used with `align = "left"` to make it so the
#' title and subtitle are left aligned in the header area.
#'
#' ```r
#' nuclides |>
#'   dplyr::filter(!is.na(abundance)) |>
#'   dplyr::filter(abundance != 1) |>
#'   dplyr::filter(z >= 1 & z <= 8) |>
#'   dplyr::mutate(element = paste0(element, ", **z = ", z, "**")) |>
#'   dplyr::mutate(nuclide = gsub("[0-9]+$", "", nuclide)) |>
#'   dplyr::select(nuclide, element, atomic_mass, abundance, abundance_uncert) |>
#'   gt(
#'     rowname_col = "nuclide",
#'     groupname_col = "element",
#'     process_md = TRUE
#'   ) |>
#'   tab_header(
#'     title = "Natural Abundance Values",
#'     subtitle = md("For elements having atomic numbers from `1` to `8`.")
#'   ) |>
#'   tab_stubhead(label = "Isotope") |>
#'   tab_stub_indent(
#'     rows = everything(),
#'     indent = 1
#'   ) |>
#'   fmt_chem(columns = stub()) |>
#'   fmt_number(
#'     columns = atomic_mass,
#'     decimals = 4,
#'     scale_by = 1 / 1e6
#'   ) |>
#'   fmt_percent(
#'     columns = contains("abundance"),
#'     decimals = 4
#'   ) |>
#'   cols_merge_uncert(
#'     col_val = abundance,
#'     col_uncert = abundance_uncert
#'   ) |>
#'   cols_label_with(fn = function(x) tools::toTitleCase(gsub("_", " ", x))) |>
#'   cols_width(
#'     stub() ~ px(70),
#'     atomic_mass ~ px(120),
#'     abundance ~ px(200)
#'   ) |>
#'   opt_align_table_header(align = "left") |>
#'   opt_vertical_padding(scale = 0.5)
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_header_4.png")`
#' }}
#'
#' @family part creation/modification functions
#' @section Function ID:
#' 2-1
#'
#' @section Function Introduced:
#' `v0.2.0.5` (March 31, 2020)
#'
#' @export
tab_header <- function(
    data,
    title,
    subtitle = NULL,
    preheader = NULL
) {

  # Perform input object validation
  stop_if_not_gt_tbl(data = data)

  dt_set_heading_components(
    data = data,
    title = title,
    subtitle = subtitle,
    preheader = preheader
  )
}

# tab_spanner() ----------------------------------------------------------------
#' Add a spanner label
#'
#' @description
#'
#' With `tab_spanner()`, you can insert a spanner in the column labels part of a
#' **gt** table. This part of the table contains, at a minimum, column labels
#' and, optionally, an unlimited number of levels for spanners. A spanner will
#' occupy space over any number of contiguous column labels and it will have an
#' associated label and ID value. This function allows for mapping to be defined
#' by column names, existing spanner ID values, or a mixture of both. The
#' spanners are placed in the order of calling `tab_spanner()` so if a later call
#' uses the same columns in its definition (or even a subset) as the first
#' invocation, the second spanner will be overlaid atop the first. Options exist
#' for forcibly inserting a spanner underneath other (with `level` as space
#' permits) and with `replace`, which allows for full or partial spanner
#' replacement.
#'
#' @inheritParams fmt_number
#'
#' @param label *Spanner label text*
#'
#'   `scalar<character>` // **required**
#'
#'   The text to use for the spanner label. We can optionally use [md()] or
#'   [html()] to style the text as Markdown or to retain HTML elements
#'   in the text.
#'
#' @param columns *Columns to target*
#'
#'   `<column-targeting expression>` // *default:* `NULL` (`optional`)
#'
#'   The columns to serve as components of the spanner. Can either be a series
#'   of column names provided in `c()`, a vector of column indices, or a select
#'   helper function (e.g. [starts_with()], [ends_with()], [contains()],
#'   [matches()], [num_range()], and [everything()]). This argument works in
#'   tandem with the `spanners` argument.
#'
#' @param spanners *Spanners to target*
#'
#'   `vector<character>` // *default:* `NULL` (`optional`)
#'
#'   The spanners that should be spanned over, should they already be defined.
#'   One or more spanner ID values (in quotes) can be supplied here. This
#'   argument works in tandem with the `columns` argument.
#'
#' @param level *Spanner level for insertion*
#'
#'   `scalar<numeric|integer>` // *default:* `NULL` (`optional`)
#'
#'   An explicit level to which the spanner should be placed. If not provided,
#'   **gt** will choose the level based on the inputs provided within `columns`
#'   and `spanners`, placing the spanner label where it will fit. The first
#'   spanner level (right above the column labels) is `1`.
#'
#'   In combination with [opt_interactive()] or `ihtml.active = TRUE` in
#'   [tab_options()] only level `1` is supported, additional levels would be
#'   discarded.
#'
#' @param id *Spanner ID*
#'
#'   `scalar<character>` // *default:* `label`
#'
#'   The ID for the spanner. When accessing a spanner through the `spanners`
#'   argument of `tab_spanner()` or [cells_column_spanners()] (when using
#'   [tab_style()] or [tab_footnote()]) the `id` value is used as the reference
#'   (and not the `label`). If an `id` is not explicitly provided here, it will
#'   be taken from the `label` value. It is advisable to set an explicit `id`
#'   value if you plan to access this cell in a later function call and the
#'   label text is complicated (e.g., contains markup, is lengthy, or both).
#'   Finally, when providing an `id` value you must ensure that it is unique
#'   across all ID values set for spanner labels (the function will stop if `id`
#'   isn't unique).
#'
#' @param gather *Gather columns together*
#'
#'   `scalar<logical>` // *default:* `TRUE`
#'
#'   An option to move the specified `columns` such that they are unified under
#'   the spanner. Ordering of the moved-into-place columns will be preserved in
#'   all cases. By default, this is set to `TRUE`.
#'
#' @param replace *Replace existing spanners*
#'
#'   `scalar<logical>` // *default:* `FALSE`
#'
#'   Should new spanners be allowed to partially or fully replace existing
#'   spanners? (This is a possibility if setting spanners at an already
#'   populated `level`.) By default, this is set to `FALSE` and an error will
#'   occur if some replacement is attempted.
#'
#' @return An object of class `gt_tbl`.
#'
#' @section Targeting columns with the `columns` argument:
#'
#' The `columns` argument allows us to target a subset of columns contained in
#' the table. We can declare column names in `c()` (with bare column names or
#' names in quotes) or we can use **tidyselect**-style expressions. This can be
#' as basic as supplying a select helper like `starts_with()`, or, providing a
#' more complex incantation like
#'
#' `where(~ is.numeric(.x) & max(.x, na.rm = TRUE) > 1E6)`
#'
#' which targets numeric columns that have a maximum value greater than
#' 1,000,000 (excluding any `NA`s from consideration).
#'
#' @section Details on spanner placement:
#'
#' Let's take a hypothetical table that includes the following column names in
#' order from left to right: `year`, `len.pop`, `m.pop`, `len.dens`, and
#' `m.dens`. We'd like to have some useful spanners, but don't want to have any
#' over the `year` column (so we'll avoid using that column when defining
#' spanners). Let's start by creating a schematic representation of what is
#' wanted in terms of spanners:
#'
#' ```{verbatim}
#'        | ------- `"Two Provinces of Ireland"` ------ <- level 2 spanner
#'        | ---- `"Leinster"` ---- | --- `"Munster"` -- <- level 1 spanners
#' `year` | `len.pop` | `len.dens` | `m.pop` | `m.dens` <- column names
#' ----------------------------------------------------
#' ```
#' To make this arrangement happen, we need three separate calls of
#' `tab_spanner()`:
#'
#' - `tab_spanner(., label = "Leinster", columns = starts_with("len"))`
#' - `tab_spanner(., label = "Munster", columns = starts_with("m"))`
#' - `tab_spanner(., label = "Two Provinces of Ireland", columns = -year)`
#'
#' This will give us the spanners we need with the appropriate labels. The ID
#' values will be derived from the labels in this case, but they can directly
#' supplied via the `id` argument.
#'
#' An important thing to keep aware of is that the order of calls matters. The
#' first two can be in any order but the third one *must* happen last since we
#' build spanners from the bottom up. Also note that the first calls will
#' rearrange columns! This is by design as the `gather = TRUE` default will
#' purposefully gather columns together so that the columns will be united under
#' a single spanner. More complex definitions of spanners can be performed and
#' the *Examples* section demonstrates some of the more advanced calls of
#' `tab_spanner()`.
#'
#' As a final note, the column labels (by default deriving from the column
#' names) will likely need to change and that's especially true in the above
#' case. This can be done with either of [cols_label()] or [cols_label_with()].
#'
#' @section Incorporating units with **gt**'s units notation:
#'
#' Measurement units are often seen as part of spanner labels and indeed it can
#' be much more straightforward to include them here rather than using other
#' devices to make readers aware of units for specific columns. Any text
#' pertaining units is to be defined alongside the spanner label. To do this, we
#' have to surround the portion of text in the label that corresponds to the
#' units definition with `"{{"`/`"}}"`.
#'
#' Now that we know how to mark text for units definition, we know need to know
#' how to write proper units with the notation. Such notation uses a succinct
#' method of writing units and it should feel somewhat familiar though it is
#' particular to the task at hand. Each unit is treated as a separate entity
#' (parentheses and other symbols included) and the addition of subscript text
#' and exponents is flexible and relatively easy to formulate. This is all best
#' shown with a few examples:
#'
#' - `"m/s"` and `"m / s"` both render as `"m/s"`
#' - `"m s^-1"` will appear with the `"-1"` exponent intact
#' - `"m /s"` gives the same result, as `"/<unit>"` is equivalent to
#'   `"<unit>^-1"`
#' - `"E_h"` will render an `"E"` with the `"h"` subscript
#' - `"t_i^2.5"` provides a `t` with an `"i"` subscript and a `"2.5"` exponent
#' - `"m[_0^2]"` will use overstriking to set both scripts vertically
#' - `"g/L %C6H12O6%"` uses a chemical formula (enclosed in a pair of `"%"`
#'   characters) as a unit partial, and the formula will render correctly with
#'   subscripted numbers
#' - Common units that are difficult to write using ASCII text may be implicitly
#'   converted to the correct characters (e.g., the `"u"` in `"ug"`, `"um"`,
#'   `"uL"`, and `"umol"` will be converted to the Greek *mu* symbol; `"degC"`
#'   and `"degF"` will render a degree sign before the temperature unit)
#' - We can transform shorthand symbol/unit names enclosed in `":"` (e.g.,
#'   `":angstrom:"`, `":ohm:"`, etc.) into proper symbols
#' - Greek letters can added by enclosing the letter name in `":"`; you can
#'   use lowercase letters (e.g., `":beta:"`, `":sigma:"`, etc.) and uppercase
#'   letters too (e.g., `":Alpha:"`, `":Zeta:"`, etc.)
#' - The components of a unit (unit name, subscript, and exponent) can be
#'   fully or partially italicized/emboldened by surrounding text with `"*"` or
#'   `"**"`
#'
#' @section Examples:
#'
#' Let's create a **gt** table using a small portion of the [`gtcars`] dataset.
#' Over several columns (`hp`, `hp_rpm`, `trq`, `trq_rpm`, `mpg_c`, `mpg_h`)
#' we'll use `tab_spanner()` to add a spanner with the label `"performance"`.
#' This effectively groups together several columns related to car performance
#' under a unifying label.
#'
#' ```r
#' gtcars |>
#'   dplyr::select(
#'     -mfr, -trim, bdy_style,
#'     -drivetrain, -trsmn, -ctry_origin
#'   ) |>
#'   dplyr::slice(1:8) |>
#'   gt(rowname_col = "model") |>
#'   tab_spanner(
#'     label = "performance",
#'     columns = c(
#'       hp, hp_rpm, trq, trq_rpm, mpg_c, mpg_h
#'     )
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_spanner_1.png")`
#' }}
#'
#' With the default `gather = TRUE` option, columns selected for a particular
#' spanner will be moved so that there is no separation between them. This can
#' be seen with the example below that uses a subset of the [`towny`] dataset.
#' The starting column order is `name`, `latitude`, `longitude`,
#' `population_2016`, `density_2016`, `population_2021`, and `density_2021`. The
#' first two uses of `tab_spanner()` deal with making separate spanners for the
#' two population and two density columns. After their use, the columns are
#' moved to this new ordering: `name`, `latitude`, `longitude`,
#' `population_2016`, `population_2021`, `density_2016`, and `density_2021`. The
#' third and final call of `tab_spanner()` doesn't further affect the ordering
#' of columns.
#'
#' ```r
#' towny |>
#'   dplyr::slice_max(population_2021, n = 5) |>
#'   dplyr::select(
#'     name, latitude, longitude,
#'     ends_with("2016"), ends_with("2021")
#'   ) |>
#'   gt() |>
#'   tab_spanner(
#'     label = "Population",
#'     columns = starts_with("pop")
#'   ) |>
#'   tab_spanner(
#'     label = "Density",
#'     columns = starts_with("den")
#'   ) |>
#'   tab_spanner(
#'     label = md("*Location*"),
#'     columns = ends_with("itude"),
#'     id = "loc"
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_spanner_2.png")`
#' }}
#'
#' While columns are moved, it is only the minimal amount of moving required
#' (pulling in columns from the right) to ensure that columns are gathered under
#' the appropriate spanners. With the last call, there are two more things to
#' note: (1) `label` values can use the [md()] (or [html()]) helper functions to
#' help create styled text, and (2) an `id` value may be supplied for reference
#' later (e.g., for styling with [tab_style()] or applying footnotes with
#' [tab_footnote()]).
#'
#' It's possible to stack multiple spanners atop each other with consecutive
#' calls of `tab_spanner()`. It's a bit like playing Tetris: putting a spanner
#' down anywhere there is another spanner (i.e., there are one or more shared
#' columns) means that second spanner will reside a level above the prior. Let's
#' look at a few examples to see how this works, and we'll also explore a few
#' lesser-known placement tricks. We'll use a cut down version of [`exibble`]
#' for this, set up a few level-`1` spanners, and then place a level-`2` spanner
#' over two other spanners.
#'
#' ```r
#' exibble_narrow <- exibble |> dplyr::slice_head(n = 3)
#'
#' exibble_narrow |>
#'   gt() |>
#'   tab_spanner(
#'     label = "Row Information",
#'     columns = c(row, group)
#'   ) |>
#'   tab_spanner(
#'     label = "Numeric Values",
#'     columns = where(is.numeric),
#'     id = "num_spanner"
#'   ) |>
#'   tab_spanner(
#'     label = "Text Values",
#'     columns = c(char, fctr),
#'     id = "text_spanner"
#'   ) |>
#'   tab_spanner(
#'     label = "Numbers and Text",
#'     spanners = c("num_spanner", "text_spanner")
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_spanner_3.png")`
#' }}
#'
#' In the above example, we used the `spanners` argument to define where the
#' `"Numbers and Text"`-labeled spanner should reside. For that, we supplied the
#' `"num_spanner"` and `"text_spanner"` ID values for the two spanners
#' associated with the `num`, `currency`, `char`, and `fctr` columns.
#' Alternatively, we could have given those column names to the `columns`
#' argument and achieved the same result. You could actually use a combination
#' of `spanners` and `columns` to define where the spanner should be placed.
#' Here is an example of just that:
#'
#' ```r
#' exibble_narrow_gt <-
#'   exibble_narrow |>
#'   gt() |>
#'   tab_spanner(
#'     label = "Numeric Values",
#'     columns = where(is.numeric),
#'     id = "num_spanner"
#'   ) |>
#'   tab_spanner(
#'     label = "Text Values",
#'     columns = c(char, fctr),
#'     id = "text_spanner"
#'   ) |>
#'   tab_spanner(
#'     label = "Text, Dates, Times, Datetimes",
#'     columns = contains(c("date", "time")),
#'     spanners = "text_spanner"
#'   )
#'
#' exibble_narrow_gt
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_spanner_4.png")`
#' }}
#'
#' And, again, we could have solely supplied all of the column names to
#' `columns` instead of using this hybrid approach, but it is interesting to
#' express the definition of spanners with this flexible combination.
#'
#' What if you wanted to extend the above example and place a spanner above the
#' `date`, `time`, and `datetime` columns? If you tried that in the manner as
#' exemplified above, the spanner will be placed in the third level of spanners:
#'
#' ```r
#' exibble_narrow_gt |>
#'   tab_spanner(
#'     label = "Date and Time Columns",
#'     columns = contains(c("date", "time")),
#'     id = "date_time_spanner"
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_spanner_5.png")`
#' }}
#'
#' Remember that the approach taken by `tab_spanner()` is to keep stacking atop
#' existing spanners. But, there is space next to the `"Text Values"` spanner on
#' the first level. You can either revise the order of `tab_spanner()` calls,
#' or, use the `level` argument to force the spanner into that level (so long
#' as there is space).
#'
#' ```r
#' exibble_narrow_gt |>
#'   tab_spanner(
#'     label = "Date and Time Columns",
#'     columns = contains(c("date", "time")),
#'     level = 1,
#'     id = "date_time_spanner"
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_spanner_6.png")`
#' }}
#'
#' That puts the spanner in the intended level. If there aren't free locations
#' available in the `level` specified you'll get an error stating which columns
#' cannot be used for the new spanner (this can be circumvented, if necessary,
#' with the `replace = TRUE` option). If you choose a level higher than the
#' maximum occupied, then the spanner will be dropped down. Again, these
#' behaviors are indicative of Tetris-like rules which tend to work well for the
#' application of spanners.
#'
#' Using a subset of the [`towny`] dataset, we can create an interesting **gt**
#' table. First, only certain columns are selected from the dataset, some
#' filtering of rows is done, rows are sorted, and then only the first 10 rows
#' are kept. After the data is introduced to [gt()], we then apply some spanner
#' labels using two calls of [tab_spanner()]. In the second of those, we
#' incorporate unit notation text (within `"{{"`/`"}}"`) in the `label` to get a
#' display of nicely-formatted units.
#'
#' ```r
#' towny |>
#'   dplyr::select(
#'     name, ends_with(c("2001", "2006")), matches("2001_2006")
#'   ) |>
#'   dplyr::filter(population_2001 > 100000) |>
#'   dplyr::slice_max(pop_change_2001_2006_pct, n = 10) |>
#'   gt() |>
#'   fmt_integer() |>
#'   fmt_percent(columns = matches("change"), decimals = 1) |>
#'   tab_spanner(
#'     label = "Population",
#'     columns = starts_with("population")
#'   ) |>
#'   tab_spanner(
#'     label = "Density, {{*persons* km^-2}}",
#'     columns = starts_with("density")
#'   ) |>
#'   cols_label(
#'     ends_with("01") ~ "2001",
#'     ends_with("06") ~ "2006",
#'     matches("change") ~ md("Population Change,<br>2001 to 2006")
#'   ) |>
#'   cols_width(everything() ~ px(120))
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_spanner_7.png")`
#' }}
#'
#' @family part creation/modification functions
#' @section Function ID:
#' 2-2
#'
#' @section Function Introduced:
#' `v0.2.0.5` (March 31, 2020)
#'
#' @seealso [tab_spanner_delim()] to create spanners and new column labels with
#'   delimited column names.
#'
#' @export
tab_spanner <- function(
    data,
    label,
    columns = NULL,
    spanners = NULL,
    level = NULL,
    id = label,
    gather = TRUE,
    replace = FALSE
) {

  # Perform input object validation
  stop_if_not_gt_tbl(data = data)

  present_spanner_ids <- dt_spanners_get_ids(data = data)

  # Get the columns supplied in `columns` as a character vector
  column_names <-
    resolve_cols_c(
      expr = {{ columns }},
      data = data,
      null_means = "nothing"
    )

  # Get the spanner IDs supplied in `spanners` as a character vector
  spanner_id_idx <-
    tidyselect::with_vars(
      vars = present_spanner_ids,
      expr = spanners
    )

  # Stop function if `level` is provided and is less than `1`
  if (!is.null(level) && level < 1) {
    cli::cli_abort(c(
      "A spanner level of {level} cannot be set.",
      "*" = "Please choose a `level` value greater than or equal to `1`."
    ))
  }

  if (is.numeric(spanner_id_idx)) {

    spanner_ids <- present_spanner_ids[spanner_id_idx]

  } else {

    if (
      !is.null(spanner_id_idx) &&
      !all(spanner_id_idx %in% present_spanner_ids)
    ) {

      error_vars <-
        base::setdiff(spanner_id_idx, present_spanner_ids)

      cli::cli_abort(
        "One or more spanner ID(s) supplied in `spanners` ({error_vars}),
        for the new spanner with the ID `{id}` doesn't belong to any
        existing spanners."
      )
    }

    spanner_ids <- spanner_id_idx
  }

  # If `column_names` and `spanner_ids` have zero lengths then
  # return the data unchanged
  if (length(column_names) < 1 && length(spanner_ids) < 1) {
    return(data)
  }

  # Check new `id` against existing `id` values across column labels
  # and spanner labels and stop if necessary
  check_spanner_id_unique(data = data, spanner_id = id)

  # Resolve the `column_names` that new spanner will span over
  column_names <-
    resolve_spanned_column_names(
      data = data,
      column_names = column_names,
      spanner_ids = spanner_ids
    )

  # Resolve the `level` of the new spanner
  level <-
    resolve_spanner_level(
      data = data,
      column_names = column_names,
      level = level
    )

  if (grepl("\\{\\{.*?\\}\\}", label)) {

    spanner_units <- gsub("^.*?(\\{\\{.*?\\}\\}).*?$", "\\1", label)
    spanner_pattern <- ""

  } else {

    spanner_units <- NA_character_
    spanner_pattern <- NA_character_
  }

  # Add the spanner to the `_spanners` table
  data <-
    dt_spanners_add(
      data = data,
      vars = column_names,
      spanner_label = label,
      spanner_units = spanner_units,
      spanner_pattern = spanner_pattern,
      spanner_id = id,
      spanner_level = level,
      gather = gather,
      replace = replace
    )

  # Move columns into place with `cols_move()` only if specific
  # conditions are met:
  # - `gather` should be TRUE
  # - `spanner_ids` should be empty
  # - `level` is NULL or `1`
  if (
    gather &&
    length(spanner_ids) < 1 &&
    (is.null(level) || level == 1)
    ) {

    data <-
      cols_move(
        data = data,
        columns = dplyr::all_of(column_names),
        after = column_names[1]
      )
  }

  data
}

resolve_spanner_level <- function(
  data,
  column_names,
  level
) {

  # If explicitly providing a `level` simply return that value
  if (!is.null(level)) {
    return(as.integer(level))
  }

  # Determine if there are any existing spanners
  any_existing_spanners <- dt_spanners_exists(data = data)

  # If there aren't any existing spanners, then the new spanner
  # level will always be `1`
  if (!any_existing_spanners) {
    return(1L)
  }

  # Get the present `spanners_tbl`
  spanners_tbl <- dt_spanners_get(data = data)

  highest_level <- 0L
  spanner_cols <- c("spanner_id", "vars", "spanner_level")
  spanners_tbl <- spanners_tbl[ , spanner_cols, drop = FALSE]

  cnd_highest_level <-
    vapply(
      spanners_tbl$vars,
      FUN.VALUE = logical(1L),
      FUN = function(x) any(column_names %in% x)
    )
  highest_level <- spanners_tbl[cnd_highest_level, "spanner_level", drop = TRUE]
  # Max of ^ and 0
  highest_level <- max(c(0, highest_level))
  highest_level + 1L
}

resolve_spanned_column_names <- function(
  data,
  column_names,
  spanner_ids
) {

  if (length(spanner_ids) > 0) {

    spanners_existing <- dt_spanners_get(data = data)

    column_names_associated <-
      unlist(
        spanners_existing[["vars"]][
          spanners_existing[["spanner_id"]] %in% spanner_ids
        ]
      )

    column_names <- c(column_names, column_names_associated)
  }

  unique(column_names)
}

# tab_spanner_delim() ----------------------------------------------------------
#' Create column labels and spanners via delimited column names
#'
#' @description
#'
#' `tab_spanner_delim()` can take specially-crafted column names and generate
#' one or more spanners (and revise column labels at the same time). This is
#' done by splitting the column name by the specified delimiter text (`delim`)
#' and placing the fragments from top to bottom (i.e., higher-level spanners to
#' the column labels) or vice versa. Furthermore, neighboring text fragments on
#' different spanner levels that have the same text will be coalesced together.
#' For instance, having the three side-by-side column names `rating_1`,
#' `rating_2`, and `rating_3` will (in the default case at least) result in a
#' spanner with the label `"rating"` above columns with the labels `"1"`, `"2"`,
#' and `"3"`. There are many options in `cols_spanner_delim()` to slice and dice
#' delimited column names in different ways:
#'
#' - delimiter text: choose the delimiter text to use for the fragmentation of
#' column names into spanners with the `delim` argument
#' - direction and amount of splitting: we can choose to split *n* times
#' according to a `limit` argument, and, we get to specify from which side of
#' the column name the splitting should commence
#' - reversal of fragments: we can reverse the order the fragments we get from
#' the splitting procedure with the `reverse` argument
#' - column constraints: it's possible to constrain which columns in a **gt**
#' table should participate in spanner creation using vectors or
#' **tidyselect**-style expressions
#'
#' @inheritParams tab_spanner
#'
#' @param delim *Delimiter for splitting*
#'
#'   `scalar<character>` // **required**
#'
#'   The delimiter text to use to split one of more column names (i.e., those
#'   that are targeted via the `columns` argument).
#'
#' @param columns *Columns to target*
#'
#'   `<column-targeting expression>` // *default:* `everything()`
#'
#'   The columns to consider for the splitting, relabeling, and spanner setting
#'   operations. Can either be a series of column names provided in `c()`, a
#'   vector of column indices, or a select helper function (e.g.,
#'   [starts_with()], [ends_with()], [contains()], [matches()], [num_range()],
#'   and [everything()]).
#'
#' @param split *Splitting side*
#'
#'   `singl-kw:[last|first]` // *default:* `"last"`
#'
#'   Should the delimiter splitting occur from the `"last"` instance of the
#'   `delim` character or from the `"first"`? The default here uses the `"last"`
#'   keyword, and splitting begins at the last instance of the delimiter in the
#'   column name. This option only has some consequence when there is a `limit`
#'   value applied that is lesser than the number of delimiter characters for a
#'   given column name (i.e., number of splits is not the maximum possible
#'   number).
#'
#' @param limit *Limit for splitting*
#'
#'   `scalar<numeric|integer|character>` // *default:* `NULL` (`optional`)
#'
#'   An optional limit to place on the splitting procedure. The default `NULL`
#'   means that a column name will be split as many times are there are
#'   delimiter characters. In other words, the default means there is no limit.
#'   If an integer value is given to `limit` then splitting will cease at the
#'   iteration given by `limit`. This works in tandem with `split` since we can
#'   adjust the number of splits from either the right side (`split = "last"`)
#'   or left side (`split = "first"`) of the column name.
#'
#' @param reverse *Reverse vector of split names*
#'
#'   `scalar<logical>` // *default:* `FALSE`
#'
#'   Should the order of split names be reversed? By default, this is `FALSE`.
#'
#' @return An object of class `gt_tbl`.
#'
#' @section Details on column splitting:
#'
#' If we take a hypothetical table that includes the column names
#' `province.NL_ZH.pop`, `province.NL_ZH.gdp`, `province.NL_NH.pop`, and
#' `province.NL_NH.gdp`, we can see that we have a naming system that has a
#' well-defined structure. We start with the more general to the left
#' (`"province"`) and move to the more specific on the right (`"pop"`). If the
#' columns are in the table in this exact order, then things are in an ideal
#' state as the eventual spanner labels will form from this neighboring.
#' When using `tab_spanner_delim()` here with `delim` set as `"."` we get the
#' following text fragments:
#'
#' - `province.NL_ZH.pop` -> `"province"`, `"NL_ZH"`, `"pop"`
#' - `province.NL_ZH.gdp` -> `"province"`, `"NL_ZH"`, `"gdp"`
#' - `province.NL_NH.pop` -> `"province"`, `"NL_NH"`, `"pop"`
#' - `province.NL_NH.gdp` -> `"province"`, `"NL_NH"`, `"gdp"`
#'
#' This gives us the following arrangement of column labels and spanner labels:
#'
#' ```{verbatim}
#' --------- `"province"` ---------- <- level 2 spanner
#' ---`"NL_ZH"`--- | ---`"NL_NH"`--- <- level 1 spanners
#' `"pop"`|`"gdp"` | `"pop"`|`"gdp"` <- column labels
#' ---------------------------------
#' ```
#'
#' There might be situations where the same delimiter is used throughout but
#' only the last instance requires a splitting. With a pair of column names like
#' `north_holland_pop` and `north_holland_area` you would only want `"pop"` and
#' `"area"` to be column labels underneath a single spanner (`"north_holland"`).
#' To achieve this, the `split` and `limit` arguments are used and the values
#' for each need to be `split = "last"` and `limit = 1`. This will give us
#' the following arrangement:
#'
#' ```{verbatim}
#' --`"north_holland"`-- <- level 1 spanner
#'  `"pop"`  |  `"area"` <- column labels
#' ---------------------
#' ```
#'
#' @section Examples:
#'
#' With a subset of the [`towny`] dataset, we can create a **gt** table and then
#' use `tab_spanner_delim()` to automatically generate column spanner labels.
#' In this case we have some column names in the form `population_<year>`.
#' The underscore character is the delimiter that separates a common word
#' `"population"` and a year value. In this default way of splitting, fragments
#' to the right are lowest (really they become new column labels) and moving
#' left we get spanners. Let's have a look at how `tab_spanner_delim()` handles
#' these column names:
#'
#' ```r
#' towny_subset_gt <-
#'   towny |>
#'   dplyr::select(name, starts_with("population")) |>
#'   dplyr::filter(grepl("^F", name)) |>
#'   gt() |>
#'   tab_spanner_delim(delim = "_") |>
#'   fmt_integer()
#'
#' towny_subset_gt
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_spanner_delim_1.png")`
#' }}
#'
#' The spanner created through this use of `tab_spanner_delim()` is
#' automatically given an ID value by **gt**. Because it's hard to know what the
#' ID value is, we can use [tab_info()] to inspect the table's indices and ID
#' values.
#'
#' ```r
#' towny_subset_gt |> tab_info()
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_spanner_delim_2.png")`
#' }}
#'
#' From this informational table, we see that the ID for the spanner is
#' `"spanner-population_1996"`. Also, the columns are still accessible by the
#' original column names (`tab_spanner_delim()` did change their labels though).
#' Let's use [tab_style()] along with [cells_column_spanners()] to add some
#' styling to the spanner label of the `towny_subset_gt` table.
#'
#' ```r
#' towny_subset_gt |>
#'   tab_style(
#'     style = cell_text(weight = "bold", transform = "capitalize"),
#'     locations = cells_column_spanners(spanners = "spanner-population_1996")
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_spanner_delim_3.png")`
#' }}
#'
#' We can plan ahead a bit and refashion the column names with **dplyr** before
#' introducing the table to [gt()] and `tab_spanner_delim()`. Here the column
#' labels have underscore delimiters where splitting is not wanted (so a period
#' or space character is used instead). The usage of `tab_spanner_delim()` gives
#' two levels of spanners. We can further touch up the labels after that with
#' [cols_label_with()] and [text_transform()].
#'
#' ```r
#' towny |>
#'   dplyr::slice_max(population_2021, n = 5) |>
#'   dplyr::select(name, ends_with("pct")) |>
#'   dplyr::rename_with(
#'     .fn = function(x) {
#'       x |>
#'         sub("pop_change_", "Population Change.", x = _) |>
#'         sub("_pct", ".pct", x = _)
#'     }
#'   ) |>
#'   gt(rowname_col = "name") |>
#'   tab_spanner_delim(delim = ".") |>
#'   fmt_number(decimals = 1, scale_by = 100) |>
#'   cols_label_with(
#'     fn = function(x) gsub("pct", "%", x)
#'   ) |>
#'   text_transform(
#'     fn = function(x) gsub("_", " - ", x, fixed = TRUE),
#'     locations = cells_column_spanners()
#'   ) |>
#'   tab_style(
#'     style = cell_text(align = "center"),
#'     locations = cells_column_labels()
#'   ) |>
#'   tab_style(
#'     style = "padding-right: 36px;",
#'     locations = cells_body()
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_spanner_delim_4.png")`
#' }}
#'
#' With a summarized, filtered, and pivoted version of the [`pizzaplace`]
#' dataset, we can create another **gt** table and then use
#' `tab_spanner_delim()` with the delimiter/separator also used in
#' `tidyr::pivot_wider()`. We can also process the generated column labels with
#' [cols_label_with()].
#'
#' ```r
#' pizzaplace |>
#'   dplyr::select(name, date, type, price) |>
#'   dplyr::group_by(name, date, type) |>
#'   dplyr::summarize(
#'     revenue = sum(price),
#'     sold = dplyr::n(),
#'     .groups = "drop"
#'   ) |>
#'   dplyr::filter(date %in% c("2015-01-01", "2015-01-02", "2015-01-03")) |>
#'   dplyr::filter(type %in% c("classic", "veggie")) |>
#'   tidyr::pivot_wider(
#'     names_from = date,
#'     names_sep = ".",
#'     values_from = c(revenue, sold),
#'     values_fn = sum,
#'     names_sort = TRUE
#'   ) |>
#'   gt(rowname_col = "name", groupname_col = "type") |>
#'   tab_spanner_delim(delim = ".") |>
#'   sub_missing(missing_text = "") |>
#'   fmt_currency(columns = starts_with("revenue")) |>
#'   data_color(
#'     columns = starts_with("revenue"),
#'     method = "numeric",
#'     palette = c("white", "lightgreen")
#'   ) |>
#'   cols_label_with(
#'     fn = function(x) {
#'       paste0(x, " (", vec_fmt_datetime(x, format = "E"), ")")
#'     }
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_spanner_delim_5.png")`
#' }}
#'
#' @family part creation/modification functions
#' @section Function ID:
#' 2-3
#'
#' @section Function Introduced:
#' `v0.2.0.5` (March 31, 2020)
#'
#' @seealso [tab_spanner()] to manually create spanners with more control over
#'   spanner labels.
#'
#' @export
tab_spanner_delim <- function(
    data,
    delim,
    columns = everything(),
    split = c("last", "first"),
    limit = NULL,
    reverse = FALSE
) {

  # Perform input object validation
  stop_if_not_gt_tbl(data = data)

  # Ensure that arguments are matched
  split <- rlang::arg_match0(split, values = c("last", "first"))

  # Perform various input checks for `limit` if it is provided
  check_number_whole(limit, min = 1, allow_null = TRUE, allow_infinite = FALSE)

  # Perform checks on `delim`
  check_string(delim, allow_empty = FALSE)

  # Get all of the columns in the dataset
  all_cols <- dt_boxhead_get_vars(data = data)

  # Get the columns supplied in `columns` as a character vector
  columns <-
    suppressWarnings(
      resolve_cols_c(
        expr = {{ columns }},
        data = data
      )
    )

  if (!is.null(columns)) {
    colnames_spanners <- base::intersect(all_cols, columns)
  } else {
    colnames_spanners <- all_cols
  }

  if (length(colnames_spanners) == 0) {
    return(data)
  }

  colnames_spanners_ordered <- colnames_spanners

  #
  # Determine the highest spanner level from these column names
  #

  max_level <-
    max(
      vapply(
        colnames_spanners_ordered,
        FUN.VALUE = integer(1), FUN = function(x) {
          length(
            str_split_across(
              x,
              delim = delim,
              n = limit,
              split = split,
              reverse = reverse
            )
          )
        }
      ),
      na.rm = TRUE
    )

  #
  # Create a matrix representation of the spanners
  #

  spanner_matrix <- matrix(data = NA_character_, nrow = max_level, ncol = 0)

  for (col in all_cols) {

    if (col %in% colnames_spanners) {

      col_name <- colnames_spanners_ordered[colnames_spanners %in% col]

      elements <-
        str_split_across(
          x = col_name,
          delim = delim,
          n = limit,
          split = split,
          reverse = reverse
        )

      elements_n <- length(elements)

      matrix_col_i <-
        matrix(
          c(rep(NA_character_, max_level - elements_n), elements),
          ncol = 1
        )

    } else {

      matrix_col_i <- matrix(c(rep(NA_character_, max_level - 1), col))
    }

    spanner_matrix <- cbind(spanner_matrix, matrix_col_i)
  }

  # If the height of the spanner matrix isn't greater than
  # one then return the data untouched
  if (nrow(spanner_matrix) == 1) {
    return(data)
  }

  for (i in rev(seq_len(nrow(spanner_matrix)))) {

    if (i == nrow(spanner_matrix)) next

    level <- nrow(spanner_matrix) - i

    rle_spanners_i <- rle(spanner_matrix[i, ])
    spanners_i_lengths <- rle_spanners_i$lengths
    spanners_i_values <- rle_spanners_i$values
    spanners_i_col_i <- utils::head(cumsum(c(1, spanners_i_lengths)), -1)

    # Initialize spanner ids to existing spanners in the data
    spanner_id_vals <- dt_spanners_get_ids(data)

    for (j in seq_along(spanners_i_lengths)) {

      if (!is.na(spanners_i_values[j])) {

        # Construct the ID for the spanner from the spanner matrix
        spanner_id <-
          paste0(
            "spanner-",
            paste(
              spanner_matrix[seq(i, nrow(spanner_matrix)), spanners_i_col_i[j]],
              collapse = delim
            )
          )

        # Modify `spanner_id` to not collide with any other values
        if (spanner_id %in% spanner_id_vals) {

          if (startsWith(spanner_id, "spanner-")) {

            # Add number to spanner ID values on first duplication
            spanner_id <- gsub("^spanner-", "spanner:1-", spanner_id)
          }

          while (spanner_id %in% spanner_id_vals) {

            # Increment number to spanner ID values on subsequent duplications
            idx_str <- gsub("^spanner:([0-9]+)-.*", "\\1", spanner_id)

            idx_int <- as.integer(idx_str)

            spanner_id <-
              gsub(
                "^(spanner:)[0-9]+(-.*)",
                paste0("\\1", idx_int + 1, "\\2"),
                spanner_id
              )
          }
        }

        spanner_id_vals <- unique(c(spanner_id_vals, spanner_id))

        spanner_columns <-
          seq(
            spanners_i_col_i[j],
            spanners_i_col_i[j] + spanners_i_lengths[j] - 1
          )

        # Set the spanner with a call to `tab_spanner()`
        data <-
          tab_spanner(
            data = data,
            label = spanners_i_values[j],
            columns = spanner_columns,
            spanners = NULL,
            level = level,
            id = spanner_id,
            gather = FALSE
          )
      }
    }
  }

  #
  # Re-label column labels included in `colnames_spanners`
  #

  new_labels <- spanner_matrix[nrow(spanner_matrix), ]
  new_label_list <- stats::setNames(as.list(new_labels), all_cols)

  #
  # Merge any column labels previously set by `cols_label()`
  #

  boxh <- dt_boxhead_get(data = data)

  old_label_list <- as.list(boxh$column_label)
  names(old_label_list) <- boxh$var

  for (name in names(new_label_list)) {

    if (!(name %in% names(old_label_list))) next

    if (
      !is.character(old_label_list[[name]]) ||
      (
        is.character(old_label_list[[name]]) &&
        old_label_list[[name]] != name
      )
    ) {
      new_label_list[[name]] <- old_label_list[[name]]
    }
  }

  # Conclude by invoking `cols_label()` on the data
  cols_label(data, .list = new_label_list)
}

str_split_across <- function(
    x,
    delim,
    n = NULL,
    split = "last",
    reverse = FALSE
) {

  delim_width <- nchar(delim)

  if (is.null(n)) {

    x_split <- unlist(strsplit(x, split = delim, fixed = TRUE))

    if (reverse) {
      x_split <- rev(x_split)
    }

    # Remove empty strings
    x_split <- x_split[x_split != ""]

    if (length(x_split) < 1) {
      x_split <- x
    }

    return(x_split)
  }

  x_delim_chars <-
    as.integer(
      unlist(gregexpr(pattern = delim, text = x, fixed = TRUE)[[1]])
    )

  if (length(x_delim_chars) == 1 && x_delim_chars == -1) {
    return(x)
  }

  x_split <- x

  for (i in seq_len(n)) {
    if (split == "last") {

      x_split_i <- x_split[1]
      x_split <- x_split[-1]

      delim_chars <-
        as.integer(
          unlist(gregexpr(pattern = delim, text = x_split_i, fixed = TRUE)[[1]])
        )

      if (length(delim_chars) == 1 && delim_chars == -1) break

      split_delim <- max(delim_chars)

      x_split_n <- nchar(x_split_i)
      x_split_1 <- substr(x_split_i, start = 1, stop = split_delim - 1)
      x_split_2 <- substr(x_split_i, start = split_delim + delim_width, x_split_n)

      x_split <- c(x_split_1, x_split_2, x_split)

    } else {

      x_split_i <- x_split[length(x_split)]
      x_split <- x_split[-length(x_split)]

      delim_chars <-
        as.integer(
          unlist(gregexpr(pattern = delim, text = x_split_i, fixed = TRUE)[[1]])
        )

      if (length(delim_chars) == 1 && delim_chars == -1) break

      split_delim <- min(delim_chars)

      x_split_n <- nchar(x_split_i)
      x_split_1 <- substr(x_split_i, start = 1, stop = split_delim - 1)
      x_split_2 <- substr(x_split_i, start = split_delim + delim_width, x_split_n)

      x_split <- c(x_split, x_split_1, x_split_2)
    }

    if (length(delim_chars) == 1) break
  }

  if (reverse) {
    x_split <- rev(x_split)
  }

  # Remove empty strings
  x_split <- x_split[x_split != ""]

  if (length(x_split) < 1) {
    x_split <- x
  }

  x_split
}

# tab_row_group() --------------------------------------------------------------
#' Add a row group to a **gt** table
#'
#' @description
#'
#' We can create a row group from a collection of rows with `tab_row_group()`.
#' This requires specification of the rows to be included, either by supplying
#' row labels, row indices, or through use of a select helper function like
#' [starts_with()]. To modify the order of row groups, we can use
#' [row_group_order()].
#'
#' To set a default row group label for any rows not formally placed in a row
#' group, we can use a separate call to `tab_options(row_group.default_label =
#' <label>)`. If this is not done and there are rows that haven't been placed
#' into a row group (where one or more row groups already exist), those rows
#' will be automatically placed into a row group without a label.
#'
#' @inheritParams fmt_number
#'
#' @param label *Row group label text*
#'
#'   `scalar<character>` // **required**
#'
#'   The text to use for the row group label. We can optionally use [md()] or
#'   [html()] to style the text as Markdown or to retain HTML elements in the
#'   text.
#'
#' @param rows *Rows to target*
#'
#'   `<row-targeting expression>` // **required**
#'
#'   The rows to be made components of the row group. We can supply a vector of
#'   row ID values within `c()`, a vector of row indices, or use select helpers
#'   (e.g. [starts_with()], [ends_with()], [contains()], [matches()],
#'   [num_range()], and [everything()]). We can also use expressions to filter
#'   down to the rows we need (e.g., `[colname_1] > 100 & [colname_2] < 50`).
#'
#' @param id *Row group ID*
#'
#'   `scalar<character>` // *default:* `label`
#'
#'   The ID for the row group. When accessing a row group through
#'   [cells_row_groups()] (when using [tab_style()] or [tab_footnote()]) the
#'   `id` value is used as the reference (and not the `label`). If an `id` is
#'   not explicitly provided here, it will be taken from the `label` value. It
#'   is advisable to set an explicit `id` value if you plan to access this cell
#'   in a later function call and the label text is complicated (e.g., contains
#'   markup, is lengthy, or both). Finally, when providing an `id` value you
#'   must ensure that it is unique across all ID values set for row groups (the
#'   function will stop if `id` isn't unique).
#'
#' @param others_label *[Deprecated] Label for default row group*
#'
#'   `scalar<character>` // *default:* `NULL` (`optional`)
#'
#'   This argument is deprecated. Instead use
#'   `tab_options(row_group.default_label = <label>)`.
#'
#' @param group *[Deprecated] The group label*
#'
#'   `scalar<character>` // *default:* `NULL` (`optional`)
#'
#'   This argument is deprecated. Instead use `label`.
#'
#' @return An object of class `gt_tbl`.
#'
#' @section Examples:
#'
#' Using a subset of the [`gtcars`] dataset, let's create a simple **gt** table
#' with row labels (from the `model` column) inside of a stub. This eight-row
#' table begins with no row groups at all but with a single use of
#' `tab_row_group()`, we can specify a row group that will contain any rows
#' where the car model begins with a number.
#'
#' ```r
#' gtcars |>
#'   dplyr::select(model, year, hp, trq) |>
#'   dplyr::slice(1:8) |>
#'   gt(rowname_col = "model") |>
#'   tab_row_group(
#'     label = "numbered",
#'     rows = matches("^[0-9]")
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_row_group_1.png")`
#' }}
#'
#' This actually makes two row groups since there are row labels that don't
#' begin with a number. That second row group is a catch-all `NA` group, and it
#' doesn't display a label at all. Rather, it is set off from the other group
#' with a double line. This may be a preferable way to display the arrangement
#' of one distinct group and an 'others' or default group. If that's the case
#' but you'd like the order reversed, you can use [row_group_order()].
#'
#' ```r
#' gtcars |>
#'   dplyr::select(model, year, hp, trq) |>
#'   dplyr::slice(1:8) |>
#'   gt(rowname_col = "model") |>
#'   tab_row_group(
#'     label = "numbered",
#'     rows = matches("^[0-9]")
#'   ) |>
#'   row_group_order(groups = c(NA, "numbered"))
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_row_group_2.png")`
#' }}
#'
#' Two more options include: (1) setting a default label for the 'others' group
#' (done through [tab_options()]), and (2) creating row groups until there are
#' no more unaccounted for rows. Let's try the first option in the next example:
#'
#' ```r
#' gtcars |>
#'   dplyr::select(model, year, hp, trq) |>
#'   dplyr::slice(1:8) |>
#'   gt(rowname_col = "model") |>
#'   tab_row_group(
#'     label = "numbered",
#'     rows = matches("^[0-9]")
#'   ) |>
#'   row_group_order(groups = c(NA, "numbered")) |>
#'   tab_options(row_group.default_label = "others")
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_row_group_3.png")`
#' }}
#'
#' The above use of the `row_group.default_label` in [tab_options()] gets the
#' job done and provides a default label. One drawback is that the default/`NA`
#' group doesn't have an ID, so it can't as easily be styled with [tab_style()];
#' however, row groups have indices and the index for the `"others"` group here
#' is `1`.
#'
#' ```r
#' gtcars |>
#'   dplyr::select(model, year, hp, trq) |>
#'   dplyr::slice(1:8) |>
#'   gt(rowname_col = "model") |>
#'   tab_row_group(
#'     label = "numbered",
#'     rows = matches("^[0-9]")
#'   ) |>
#'   row_group_order(groups = c(NA, "numbered")) |>
#'   tab_options(row_group.default_label = "others") |>
#'   tab_style(
#'     style = cell_fill(color = "bisque"),
#'     locations = cells_row_groups(groups = 1)
#'   ) |>
#'   tab_style(
#'     style = cell_fill(color = "lightgreen"),
#'     locations = cells_row_groups(groups = "numbered")
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_row_group_4.png")`
#' }}
#'
#' Now let's try using `tab_row_group()` with our [`gtcars`]-based table such
#' that all rows are formally assigned to different row groups. We'll define two
#' row groups with the (Markdown-infused) labels `"**Powerful Cars**"` and
#' `"**Super Powerful Cars**"`. The distinction between the groups is whether
#' `hp` is lesser or greater than `600` (and this is governed by the expressions
#' provided to the `rows` argument).
#'
#' ```r
#' gtcars |>
#'   dplyr::select(model, year, hp, trq) |>
#'   dplyr::slice(1:8) |>
#'   gt(rowname_col = "model") |>
#'   tab_row_group(
#'     label = md("**Powerful Cars**"),
#'     rows = hp < 600,
#'     id = "powerful"
#'   ) |>
#'   tab_row_group(
#'     label = md("**Super Powerful Cars**"),
#'     rows = hp >= 600,
#'     id = "v_powerful"
#'   ) |>
#'   tab_style(
#'     style = cell_fill(color = "gray85"),
#'     locations = cells_row_groups(groups = "powerful")
#'   ) |>
#'   tab_style(
#'     style = list(
#'       cell_fill(color = "gray95"),
#'       cell_text(size = "larger")
#'     ),
#'     locations = cells_row_groups(groups = "v_powerful")
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_row_group_5.png")`
#' }}
#'
#' Setting the `id` values for each of the row groups makes things easier since
#' you will have clean, markup-free ID values to reference in later calls (as
#' was done with the [tab_style()] invocations in the example above). The use of
#' the [md()] helper function makes it so that any Markdown provided for the
#' `label` of a row group is faithfully rendered.
#'
#' @family part creation/modification functions
#' @section Function ID:
#' 2-4
#'
#' @section Function Introduced:
#' `v0.2.0.5` (March 31, 2020)
#'
#' @export
tab_row_group <- function(
    data,
    label,
    rows,
    id = label,
    others_label = NULL,
    group = NULL
) {

  # Perform input object validation
  stop_if_not_gt_tbl(data = data)

  arrange_groups_vars <- dt_row_groups_get(data = data)

  if (!missing(group)) {

    if (missing(label)) {
      label <- group
    }

    cli::cli_warn(c(
      "Since gt v0.3.0 the `group` argument has been deprecated.",
      "*" = "Use the `label` argument to specify the group label."
    ),
    .frequency = "regularly",
    .frequency_id = "tab_row_group_group_arg_deprecated"
    )
  }

  # Warn user about `others_label` deprecation
  if (!is.null(others_label)) {

    data <-
      tab_options(
        data = data,
        row_group.default_label = others_label
      )

    cli::cli_warn(c(
      "Since gt v0.3.0 the `others_label` argument has been deprecated.",
      "*" = "Use `tab_options(row_group.default_label = <label>)` to set
      this label."
    ),
    .frequency = "regularly",
    .frequency_id = "tab_row_group_others_label_arg_deprecated"
    )

    if (missing(label) && missing(rows) && missing(id)) {
      return(data)
    }
  }

  # Check `id` against existing `id` values and stop if necessary
  check_row_group_id_unique(data = data, row_group_id = id)

  # Capture the `rows` expression
  row_expr <- rlang::enquo(rows)

  # Resolve the row numbers using `resolve_vars()`
  resolved_rows_idx <-
    resolve_rows_i(
      expr = !!row_expr,
      data = data
    )

  # Get the `stub_df` data frame from `data`
  stub_df <- dt_stub_df_get(data = data)

  # If the label is marked as HTML or Markdown and there's no `id` set
  # (assumed when `id` is equal to `label`), strip away HTML tags in the
  # `id` value
  if (id == label && (inherits(id, "html") || inherits(id, "from_markdown"))) {
    id <- remove_html(as.character(id))
  }

  # Place the `label` in the `groupname` column `stub_df`
  stub_df[resolved_rows_idx, "group_label"] <- list(list(label))
  stub_df[resolved_rows_idx, "group_id"] <- as.character(id)

  data <- dt_stub_df_set(data = data, stub_df = stub_df)

  # Set the `_row_groups` vector here with the group id; new groups will
  # be placed at the front, pushing down `NA` (the 'Others' group)
  arrange_groups_vars <- arrange_groups_vars[!is.na(arrange_groups_vars)]
  arrange_groups_vars <- c(id, arrange_groups_vars)
  arrange_groups_vars <- unique(arrange_groups_vars)
  arrange_groups_vars <- arrange_groups_vars[arrange_groups_vars %in% stub_df$group_id]

  if (dt_stub_groupname_has_na(data = data)) {
    arrange_groups_vars <- c(arrange_groups_vars, NA_character_)
  }

  if (length(arrange_groups_vars) == 1 && is.na(arrange_groups_vars)) {
    arrange_groups_vars <- character(0L)
  }

  dt_row_groups_set(
    data = data,
    row_groups = arrange_groups_vars
  )
}

# tab_stubhead() ---------------------------------------------------------------
#' Add label text to the stubhead
#'
#' @description
#'
#' We can add a label to the stubhead of a **gt** table with `tab_stubhead()`.
#' The stubhead is the lone part of the table that is positioned left of the
#' column labels, and above the stub. If a stub does not exist, then there is no
#' stubhead (so no visible change will be made when using this function in that
#' case). We have the flexibility to use Markdown formatting for the stubhead
#' label via the [md()] helper function. Furthermore, if the table is intended
#' for HTML output, we can use HTML inside of [html()] for the stubhead label.
#'
#' @inheritParams fmt_number
#'
#' @param label *Stubhead label text*
#'
#'   `scalar<character>` // **required**
#'
#'   The text to be used as the stubhead label. We can optionally use [md()] or
#'   [html()] to style the text as Markdown or to retain HTML elements in the
#'   text.
#'
#' @return An object of class `gt_tbl`.
#'
#' @section Examples:
#'
#' Using a small subset of the [`gtcars`] dataset, we can create a **gt** table
#' with row labels. Since we have row labels in the stub (via use of
#' `rowname_col = "model"` in the [gt()] function call) we have a stubhead, so,
#' let's add a stubhead label (`"car"`) with `tab_stubhead()` to
#' describe what's in the stub.
#'
#' ```r
#' gtcars |>
#'   dplyr::select(model, year, hp, trq) |>
#'   dplyr::slice(1:5) |>
#'   gt(rowname_col = "model") |>
#'   tab_stubhead(label = "car")
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_stubhead_1.png")`
#' }}
#'
#' The stuhead can contain all sorts of interesting content. How about an icon
#' for a car? We can make this happen with help from the **fontawesome**
#' package.
#'
#' ```r
#' gtcars |>
#'   dplyr::select(model, year, hp, trq) |>
#'   dplyr::slice(1:5) |>
#'   gt(rowname_col = "model") |>
#'   tab_stubhead(label = fontawesome::fa("car"))
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_stubhead_2.png")`
#' }}
#'
#' If the stub is two columns wide (made possible by using
#' `row_group_as_column = TRUE` in the [gt()] statement), the stubhead will be a
#' merged cell atop those two stub columns representing the row group and the
#' row label. Here's an example of that type of situation in a table that uses
#' the [`peeps`] dataset.
#'
#' ```r
#' peeps |>
#'   dplyr::filter(country %in% c("POL", "DEU")) |>
#'   dplyr::group_by(country) |>
#'   dplyr::filter(dplyr::row_number() %in% 1:5) |>
#'   dplyr::ungroup() |>
#'   dplyr::mutate(name = paste0(toupper(name_family), ", ", name_given)) |>
#'   dplyr::select(name, address, city, postcode, country) |>
#'   gt(
#'     rowname_col = "name",
#'     groupname_col = "country",
#'     row_group_as_column = TRUE
#'   ) |>
#'   tab_stubhead(label = "Country Code / Person") |>
#'   tab_style(
#'     style = cell_text(transform = "capitalize"),
#'     locations = cells_column_labels()
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_stubhead_3.png")`
#' }}
#'
#' The stubhead cell and its text can be styled using [tab_style()] with
#' [cells_stubhead()]. In this example, using the [`reactions`] dataset, we
#' style the stubhead label so that it is vertically centered with text that is
#' highly emboldened.
#'
#' ```r
#' reactions |>
#'   dplyr::filter(cmpd_type == "nitrophenol") |>
#'   dplyr::select(cmpd_name, OH_k298, Cl_k298) |>
#'   dplyr::filter(!(is.na(OH_k298) & is.na(Cl_k298))) |>
#'   gt(rowname_col = "cmpd_name") |>
#'   tab_spanner(
#'     label = "Rate constant at 298 K, in {{cm^3 molecules^-1 s^-1}}",
#'     columns = ends_with("k298")
#'   ) |>
#'   tab_stubhead(label = "Nitrophenol Compound") |>
#'   fmt_scientific() |>
#'   sub_missing() |>
#'   cols_label_with(fn = function(x) sub("_k298", "", x)) |>
#'   cols_width(everything() ~ px(200)) |>
#'   tab_style(
#'     style = cell_text(v_align = "middle", weight = "800"),
#'     locations = cells_stubhead()
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_stubhead_4.png")`
#' }}
#'
#' @family part creation/modification functions
#' @section Function ID:
#' 2-5
#'
#' @section Function Introduced:
#' `v0.2.0.5` (March 31, 2020)
#'
#' @export
tab_stubhead <- function(
    data,
    label
) {

  # Perform input object validation
  stop_if_not_gt_tbl(data = data)

  dt_stubhead_label(data = data, label = label)
}

# tab_stub_indent() ------------------------------------------------------------
#' Control indentation of row labels in the stub
#'
#' @description
#'
#' Indentation of row labels is an effective way for establishing structure in a
#' table stub. `tab_stub_indent()` allows for fine control over row label
#' indentation in the stub. We can use an explicit definition of an indentation
#' level (with a number between `0` and `5`), or, employ an indentation
#' directive using keywords (`"increase"`/`"decrease"`).
#'
#' @inheritParams fmt_number
#'
#' @param rows *Rows to target*
#'
#'   `<row-targeting expression>` // **required**
#'
#'   The rows to consider for the indentation change. We can supply a vector of
#'   row ID values within `c()`, a vector of row indices, or use select helpers
#'   here (e.g. [starts_with()], [ends_with()], [contains()], [matches()],
#'   [num_range()], and [everything()]). We can also use expressions to filter
#'   down to the rows we need (e.g., `[colname_1] > 100 & [colname_2] < 50`).
#'
#' @param indent *Indentation directive*
#'
#'   `scalar<character|numeric|integer>` // *default:* `"increase"`
#'
#'   An indentation directive either as a keyword describing the indentation
#'   change or as an explicit integer value for directly setting the indentation
#'   level. The keyword `"increase"` (the default) will increase the indentation
#'   level by one; `"decrease"` will do the same in the reverse direction. The
#'   starting indentation level of `0` means no indentation and this values
#'   serves as a lower bound. The upper bound for indentation is at level `5`.
#'
#' @return An object of class `gt_tbl`.
#'
#' @section Compatibility of arguments with the `from_column()` helper function:
#'
#' [from_column()] can be used with the `indent` argument of `tab_stub_indent()`
#' to obtain varying parameter values from a specified column within the table.
#' This means that each row label could be indented a little bit differently.
#'
#' Please note that for this argument (`indent`), a [from_column()] call needs
#' to reference a column that has data of the `numeric` or `integer` type.
#' Additional columns for parameter values can be generated with [cols_add()]
#' (if not already present). Columns that contain parameter data can also be
#'  hidden from final display with [cols_hide()].
#'
#' @section Examples:
#'
#' Using a subset of the [`photolysis`] dataset within a **gt** table, we can
#' provide some indentation to all of the row labels in the stub via
#' `tab_stub_indent()`. Here we provide an `indent` value of `3` for a very
#' prominent indentation that clearly shows that the row labels are subordinate
#' to the two row group labels in this table (`"inorganic reactions"` and
#' `"carbonyls"`).
#'
#' ```r
#' photolysis |>
#'   dplyr::select(cmpd_name, products, type, l, m, n) |>
#'   dplyr::slice_head(n = 10) |>
#'   gt(groupname_col = "type", rowname_col = "cmpd_name") |>
#'   fmt_chem(columns = products) |>
#'   fmt_scientific(columns = l) |>
#'   tab_stub_indent(
#'     rows = everything(),
#'     indent = 3
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_stub_indent_1.png")`
#' }}
#'
#' Let's use a summarized version of the [`pizzaplace`] dataset to create a
#' another **gt** table with row groups and row labels. With [summary_rows()],
#' we'll generate summary rows at the top of each row group. Using
#' `tab_stub_indent()` we can add indentation to the row labels in the stub.
#'
#' ```r
#' pizzaplace |>
#'   dplyr::group_by(type, size) |>
#'   dplyr::summarize(
#'     sold = dplyr::n(),
#'     income = sum(price),
#'     .groups = "drop"
#'   ) |>
#'   gt(rowname_col = "size", groupname_col = "type") |>
#'   tab_header(title = "Pizzas Sold in 2015") |>
#'   fmt_integer(columns = sold) |>
#'   fmt_currency(columns = income) |>
#'   summary_rows(
#'     fns = list(label = "All Sizes", fn = "sum"),
#'     side = "top",
#'     fmt = list(
#'       ~ fmt_integer(., columns = sold),
#'       ~ fmt_currency(., columns = income)
#'     )
#'   ) |>
#'   tab_options(
#'     summary_row.background.color = "gray95",
#'     row_group.background.color = "#FFEFDB",
#'     row_group.as_column = TRUE
#'   ) |>
#'   tab_stub_indent(
#'     rows = everything(),
#'     indent = 2
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_stub_indent_2.png")`
#' }}
#'
#' Indentation of entries in the stub can be controlled by values within a
#' column. Here's an example of that using the [`constants`] dataset, where
#' variations of a row label are mutated to eliminate the common leading text
#' (replacing it with `"..."`). At the same time, the indentation for those rows
#' is set to `4` in the `indent` column (value is `0` otherwise). The
#' `tab_stub_indent()` statement uses [from_column()], which passes values from
#' the `indent` column to the namesake argument. We hide the `indent` column
#' from view by use of [cols_hide()].
#'
#' ```r
#' constants |>
#'   dplyr::select(name, value, uncert, units) |>
#'   dplyr::filter(
#'     grepl("^atomic mass constant", name) |
#'       grepl("^Rydberg constant", name) |
#'       grepl("^Bohr magneton", name)
#'   ) |>
#'   dplyr::mutate(
#'     indent = ifelse(grepl("constant |magneton ", name), 4, 0),
#'     name = gsub(".*constant |.*magneton ", "...", name)
#'   ) |>
#'   gt(rowname_col = "name") |>
#'   tab_stubhead(label = "Physical Constant") |>
#'   tab_stub_indent(
#'     rows = everything(),
#'     indent = from_column(column = "indent")
#'   ) |>
#'   fmt_scientific(columns = c(value, uncert)) |>
#'   fmt_units(columns = units) |>
#'   cols_hide(columns = indent) |>
#'   cols_label(
#'     value = "Value",
#'     uncert = "Uncertainty",
#'     units = "Units"
#'   ) |>
#'   cols_width(
#'     stub() ~ px(250),
#'     c(value, uncert) ~ px(150),
#'     units ~ px(80)
#'   ) |>
#'   tab_style(
#'     style = cell_text(indent = px(10)),
#'     locations = list(
#'       cells_column_labels(columns = units),
#'       cells_body(columns = units)
#'     )
#'   )
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_stub_indent_3.png")`
#' }}
#'
#' @family part creation/modification functions
#' @section Function ID:
#' 2-6
#'
#' @section Function Introduced:
#' `v0.7.0` (Aug 25, 2022)
#'
#' @export
tab_stub_indent <- function(
    data,
    rows,
    indent = "increase"
) {

  # Perform input object validation
  stop_if_not_gt_tbl(data = data)
  rlang::check_required(rows)
  # Capture the `rows` expression
  row_expr <- rlang::enquo(rows)

  # Get the `stub_df` data frame from `data`
  stub_df <- dt_stub_df_get(data = data)

  # Resolve the row numbers using `resolve_vars()`
  resolved_rows_idx <-
    resolve_rows_i(
      expr = !!row_expr,
      data = data
    )

  # Get existing indentation values
  indent_vals <- stub_df[stub_df$rownum_i %in% resolved_rows_idx, ][["indent"]]

  # Implement support for the `from_column()` helper function; when
  # used for the `indent` arg, a `gt_column` object is provided
  if (inherits(indent, "gt_column")) {

    # Obtain the underlying data table
    data_df <- dt_data_get(data = data)

    # Obtain a `resolved_column` from a column name in the table
    resolved_column <- resolve_cols_c(expr = indent[["column"]], data = data)

    indent_vals <- data_df[resolved_rows_idx, ][[resolved_column]]

    # Stop function if indentation values aren't numeric
    if (!is.numeric(indent_vals)) {
      cli::cli_abort("Values taken from a column must be numeric.")
    }

    # If a function supplied with `fn` in the `from_column()` output,
    # apply that function to any `indent_vals`
    if (!is.null(indent[["fn"]])) {

      fn <- indent[["fn"]]
      indent_vals <- fn(indent_vals)
    }

    # If there is an `na_value` provided along with `from_column()`, apply
    # that to the `indent_vals` vector
    if (!is.null(indent[["na_value"]])) {

      na_value <- indent[["na_value"]]

      # Stop function if the `na_value` isn't numeric
      if (!is.numeric(na_value)) {
        cli::cli_abort("The `na_value` provided must be numeric.")
      }

      indent_vals[is.na(indent_vals)] <- na_value
    }

    indent_vals <- abs(as.integer(indent_vals))

    indent_vals[indent_vals > 5] <- 5L

    indent_vals <- as.character(indent_vals)

  } else {

    for (i in seq_along(indent_vals)) {

      if (is.na(indent_vals[i])) {
        indent_val_i <- 0L
      } else if (grepl("^[0-9]$", indent_vals[i])) {
        indent_val_i <- as.integer(indent_vals[i])
      } else {
        indent_val_i <- indent_vals[i]
      }

      # Modify `indent_val_i` based on keyword directives
      if (is.character(indent)) {

        # Move `indent_val_i` up or down by one
        if (indent == "increase") {
          indent_val_i <- indent_val_i + 1L
        } else if (indent == "decrease") {
          indent_val_i <- indent_val_i - 1L
        }

        # Set hard boundaries on the indentation value (LB is `0`, UB is `5`)
        if (indent_val_i > 5) indent_val_i <- 5L
        if (indent_val_i < 0) indent_val_i <- 0L
      }

      # Modify `indent_val_i` using a fixed value
      if (
        is.numeric(indent) &&
        !is.na(indent) &&
        !is.infinite(indent)
      ) {

        # Stop function if `indent` value doesn't fall into the acceptable range
        check_number_whole(
          indent,
          min = 0,
          max = 5,
          allow_infinite = FALSE
        )

        # Coerce `indent` to an integer value
        indent_val_i <- as.integer(indent)
      }

      # Ensure that `indent_val_i` is assigned to `indent_vals` as
      # a character value
      indent_vals[i] <- as.character(indent_val_i)
    }
  }

  stub_df[stub_df$rownum_i %in% resolved_rows_idx, ][["indent"]] <- indent_vals

  dt_stub_df_set(data = data, stub_df = stub_df)
}

# tab_source_note() ------------------------------------------------------------
#' Add a source note citation
#'
#' @description
#'
#' Add a source note to the footer part of the **gt** table. A source note is
#' useful for citing the data included in the table. Several can be added to the
#' footer, simply use multiple calls of `tab_source_note()` and they will be
#' inserted in the order provided. We can use Markdown formatting for the note,
#' or, if the table is intended for HTML output, we can include HTML formatting.
#'
#' @inheritParams fmt_number
#'
#' @param source_note *Source note text*
#'
#'   `scalar<character>` // **required**
#'
#'   Text to be used in the source note. We can optionally use [md()] and
#'   [html()] to style the text as Markdown or to retain HTML elements
#'   in the text.
#'
#' @return An object of class `gt_tbl`.
#'
#' @section Examples:
#'
#' With three columns from the [`gtcars`] dataset, let's create a **gt** table.
#' We can use `tab_source_note()` to add a source note to the table
#' footer. Here we are citing the data source but this function can be used for
#' any text you'd prefer to display in the footer section.
#'
#' ```r
#' gtcars |>
#'   dplyr::select(mfr, model, msrp) |>
#'   dplyr::slice(1:5) |>
#'   gt() |>
#'   tab_source_note(source_note = "From edmunds.com")
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_source_note_1.png")`
#' }}
#'
#' @family part creation/modification functions
#' @section Function ID:
#' 2-8
#'
#' @section Function Introduced:
#' `v0.2.0.5` (March 31, 2020)
#'
#' @export
tab_source_note <- function(
    data,
    source_note
) {

  # Perform input object validation
  stop_if_not_gt_tbl(data = data)

  dt_source_notes_add(
    data = data,
    source_note = source_note
  )
}

# tab_caption() ----------------------------------------------------------------
#' Add a table caption
#'
#' @description
#'
#' Add a caption to a **gt** table, which is handled specially for a table
#' within an R Markdown, Quarto, or **bookdown** context. The addition of
#' captions makes tables cross-referencing across the containing document. The
#' caption location (i.e., top, bottom, margin) is handled at the document level
#' in each of these systems.
#'
#' @inheritParams fmt_number
#'
#' @param caption *Table caption text*
#'
#'   `scalar<character>` // **required**
#'
#'   The table caption to use for cross-referencing in R Markdown, Quarto, or
#'   **bookdown**.
#'
#' @return An object of class `gt_tbl`.
#'
#' @section Examples:
#'
#' With three columns from the [`gtcars`] dataset, let's create a **gt** table.
#' First, we'll add a header part with [tab_header()]. After that, a caption is
#' added with `tab_caption()`.
#'
#' ```r
#' gtcars |>
#'   dplyr::select(mfr, model, msrp) |>
#'   dplyr::slice(1:5) |>
#'   gt() |>
#'   tab_header(
#'     title = md("Data listing from **gtcars**"),
#'     subtitle = md("`gtcars` is an R dataset")
#'   ) |>
#'   tab_caption(caption = md("**gt** table example."))
#' ```
#'
#' \if{html}{\out{
#' `r man_get_image_tag(file = "man_tab_caption_1.png")`
#' }}
#'
#' @family part creation/modification functions
#' @section Function ID:
#' 2-9
#'
#' @section Function Introduced:
#' `v0.8.0` (November 16, 2022)
#'
#' @export
tab_caption <- function(
    data,
    caption
) {

  # Perform input object validation
  stop_if_not_gt_tbl(data = data)

  dt_options_set_value(
    data = data,
    option = "table_caption",
    value = caption
  )
}
rstudio/gt documentation built on Nov. 2, 2024, 5:53 p.m.