#
# parres.R
#
# code to plot transformation diagnostic
#
# $Revision: 1.17 $ $Date: 2022/05/20 04:11:49 $
#
parres <- function(model, covariate, ...,
smooth.effect=FALSE, subregion=NULL,
bw="nrd0", adjust=1, from=NULL,to=NULL, n=512,
bw.input = c("points", "quad"),
bw.restrict = FALSE,
covname) {
callstring <- paste(deparse(sys.call()), collapse = "")
modelname <- deparse(substitute(model))
stopifnot(is.ppm(model))
if(missing(covariate)) {
mc <- model.covariates(model)
if(length(mc) == 1) covariate <- mc else stop("covariate must be provided")
}
if(missing(covname))
covname <- sensiblevarname(deparse(substitute(covariate)), "X")
if(is.marked(model))
stop("Sorry, this is not yet implemented for marked models")
if(!is.null(subregion))
stopifnot(is.owin(subregion))
if(is.null(adjust)) adjust <- 1
bw.input <- match.arg(bw.input)
# validate model
modelcall <- model$callstring
if(is.null(modelcall))
modelcall <- model$call
if(is.null(getglmfit(model)))
model <- update(model, forcefit=TRUE)
# extract spatial locations
Q <- quad.ppm(model)
# datapoints <- Q$data
quadpoints <- union.quad(Q)
Z <- is.data(Q)
wts <- w.quad(Q)
nQ <- npoints(quadpoints)
# fitted intensity
lam <- fitted(model, type="trend")
# subset of quadrature points used to fit model
subQset <- getglmsubset(model)
if(is.null(subQset)) subQset <- rep.int(TRUE, nQ)
# restriction to subregion
insubregion <- if(!is.null(subregion)) {
inside.owin(quadpoints, w=subregion)
} else rep.int(TRUE, nQ)
################################################################
# Inverse lambda residuals
rx <- residuals(model, type="inverse")
resid <- with(rx, "increment")
#################################################################
# identify the covariate
#
if(length(covariate) == 0)
stop("No covariate specified")
covtype <- "unknown"
if(!is.character(covariate)) {
# Covariate is some kind of data, treated as external covariate
covtype <- "external"
beta <- 0
covvalues <- evaluateCovariate(covariate, quadpoints)
} else {
# Argument is name of covariate
covname <- covariate
if(length(covname) > 1)
stop("Must specify only one covariate")
# 'original covariates'
orig.covars <- variablesinformula(formula(model))
# 'canonical covariates'
canon.covars <- names(coef(model))
# offsets
offset.covars <- offsetsinformula(formula(model))
#
if(covname %in% orig.covars) {
# one of the original covariates
covtype <- "original"
covvalues <- evaluateCovariate(findCovariate(covname, model), quadpoints)
} else if(covname %in% canon.covars) {
# one of the canonical covariates
covtype <- "canonical"
mm <- model.matrix(model)
covvalues <- mm[, covname]
## extract the corresponding coefficient
beta <- coef(model)[[covname]]
} else if(covname %in% offset.covars) {
# an offset term only
covtype <- "offset"
mf <- model.frame(model, subset=rep.int(TRUE, n.quad(Q)))
if(!(covname %in% colnames(mf)))
stop(paste("Internal error: offset term", covname,
"not found in model frame"))
covvalues <- mf[, covname]
## fixed coefficient (not an estimated parameter)
beta <- 1
} else{
# must be an external covariate (i.e. not used in fitted model)
covtype <- "external"
beta <- 0
covvalues <- evaluateCovariate(findCovariate(covname, model), quadpoints)
}
}
# validate covvalues
#
if(is.null(covvalues))
stop("Unable to extract covariate values")
if(length(covvalues) != npoints(quadpoints))
stop(paste("Internal error: number of covariate values =",
length(covvalues), "!=", npoints(quadpoints),
"= number of quadrature points"))
vtype <- typeof(covvalues)
switch(vtype,
real=,
double = { },
integer = {
warning("Covariate is integer-valued")
},
stop(paste("Cannot handle covariate of type", sQuote(vtype))))
#################################################################
# Compute covariate effect
if(covtype != "original") {
effect <- beta * covvalues
mediator <- covtype
effectfundata <- list(beta=beta)
effectFun <- function(x) { (effectfundata$beta) * x }
isoffset <- (covtype == "offset")
names(isoffset) <- covname
} else {
## `original' covariate (passed as argument to ppm)
## may determine one or more canonical covariates and/or offsets
origcovdf <- getppmOriginalCovariates(model)[insubregion, , drop=FALSE]
isconstant <- lapply(origcovdf,
function(z) { length(unique(z)) == 1 })
##
## Initialise
termnames <- character(0)
termbetas <- numeric(0)
isoffset <- logical(0)
mediator <- character(0)
effect <- 0
effectFun <- function(x) { effectFun.can(x) + effectFun.off(x) }
effectFun.can <- effectFun.off <- function(x) { 0 * x }
## Identify relevant canonical covariates
dmat <- model.depends(model)
if(!(covname %in% colnames(dmat)))
stop("Internal error: cannot match covariate names")
relevant <- dmat[, covname]
if(any(relevant)) {
# original covariate determines one or more canonical covariates
mediator <- "canonical"
## check whether covariate is separable
check.separable(dmat, covname, isconstant)
## Extract information about relevant model terms
termnames <- rownames(dmat)[relevant]
isoffset <- rep.int(FALSE, length(termnames))
names(isoffset) <- termnames
## Extract relevant canonical covariates
mm <- model.matrix(model)
termvalues <- mm[, relevant, drop=FALSE]
## extract corresponding coefficients
termbetas <- coef(model)[relevant]
## evaluate model effect
effect <- as.numeric(termvalues %*% termbetas)
## check length
if(length(effect) != npoints(quadpoints))
stop(paste("Internal error: number of values of fitted effect =",
length(effect), "!=", npoints(quadpoints),
"= number of quadrature points"))
## Trap loglinear case
if(length(termnames) == 1 && identical(termnames, covname)) {
covtype <- "canonical"
beta <- termbetas
}
## construct the corresponding function
gd <- getglmdata(model)
goodrow <- min(which(complete.cases(gd)))
defaultdata <- gd[goodrow, , drop=FALSE]
#' set interaction terms to zero
if(length(Vnames <- model$internal$Vnames))
defaultdata[,Vnames] <- 0
gf <- getglmfit(model)
effectfundata.can <- list(covname=covname,
fmla = rhs.of.formula(formula(gf)),
termbetas = termbetas,
defaultdata = defaultdata,
relevant = relevant,
termnames = termnames)
effectFun.can <- function(x) {
d <- effectfundata.can
# replicate default data to correct length
df <- as.data.frame(lapply(d$defaultdata, rep, length(x)))
# overwrite value of covariate with new data
df[,covname] <- x
# construct model matrix
m <- model.matrix(d$fmla, df)
# check it conforms to expected structure
if(!identical(colnames(m)[d$relevant], d$termnames))
stop("Internal error: mismatch in term names in effectFun")
me <- m[, d$relevant, drop=FALSE]
y <- me %*% as.matrix(d$termbetas, ncol=1)
return(y)
}
}
if(!is.null(offmat <- attr(dmat, "offset")) &&
any(relevant <- offmat[, covname])) {
## covariate appears in a model offset term
mediator <- c(mediator, "offset")
## check whether covariate is separable
check.separable(offmat, covname, isconstant)
## collect information about relevant offset
offnames <- rownames(offmat)[relevant]
termnames <- c(termnames, offnames)
noff <- length(offnames)
termbetas <- c(termbetas, rep.int(1, noff))
isoffset <- c(isoffset, rep.int(TRUE, noff))
names(termbetas) <- names(isoffset) <- termnames
## extract values of relevant offset
mf <- model.frame(model, subset=rep.int(TRUE, n.quad(Q)))
if(any(nbg <- !(offnames %in% colnames(mf))))
stop(paste("Internal error:",
ngettext(sum(nbg), "offset term", "offset terms"),
offnames[nbg],
"not found in model frame"))
effex <- mf[, offnames, drop=FALSE]
effect <- effect + rowSums(effex)
#
# construct the corresponding function
gd <- getglmdata(model)
goodrow <- min(which(complete.cases(gd)))
defaultdata <- gd[goodrow, , drop=FALSE]
#' set interaction terms to zero
if(length(Vnames <- model$internal$Vnames))
defaultdata[,Vnames] <- 0
gf <- getglmfit(model)
effectfundata.off <- list(covname=covname,
fmla = rhs.of.formula(formula(gf)),
defaultdata = defaultdata,
offnames = offnames)
effectFun.off <- function(x) {
d <- effectfundata.off
# replicate default data to correct length
df <- as.data.frame(lapply(d$defaultdata, rep, length(x)))
# overwrite value of covariate with new data
df[,covname] <- x
# construct model FRAME
mf <- model.frame(d$fmla, df)
# check it conforms to expected structure
if(!all(d$offnames %in% colnames(mf)))
stop("Internal error: mismatch in term names in effectFun")
moff <- mf[, d$offnames, drop=FALSE]
y <- rowSums(moff)
return(y)
}
}
if(length(termnames) == 0) {
# Sanity clause
# (everyone knows there ain't no Sanity Clause...)
warning(paste("Internal error: could not find any",
"canonical covariates or offset terms",
"that depended on the covariate", sQuote(covname)))
# Assume it's an external covariate (i.e. not used in fitted model)
covtype <- "external"
beta <- 0
effect <- beta * covvalues
effectFun <- function(x) { 0 * x }
isoffset <- FALSE
names(isoffset) <- covname
}
}
#### Canonical covariates and coefficients
switch(covtype,
original={
cancovs <- termnames
canbeta <- termbetas
},
offset = ,
canonical={
cancovs <- covname
canbeta <- beta
},
external={
cancovs <- canbeta <- NA
})
#################################################################
# Validate covariate values
# locations that must have finite values
operative <- if(bw.restrict) insubregion & subQset else subQset
nbg.cov <- !is.finite(covvalues)
if(any(offending <- nbg.cov & operative)) {
warning(paste(sum(offending), "out of", length(offending),
"covariate values discarded because",
ngettext(sum(offending), "it is", "they are"),
"NA or infinite"))
}
nbg.eff <- !is.finite(effect)
if(any(offending <- nbg.eff & operative)) {
warning(paste(sum(offending), "out of", length(offending),
"values of fitted effect discarded because",
ngettext(sum(offending), "it is", "they are"),
"NA or infinite"))
}
#################################################################
# Restrict data to 'operative' points
# with finite values
nbg <- nbg.cov | nbg.eff
ok <- !nbg & operative
if(sum(ok) < 2) {
warning("Not enough data; returning NULL")
return(NULL)
}
if(!all(ok)) {
Q <- Q[ok]
covvalues <- covvalues[ok]
quadpoints <- quadpoints[ok]
resid <- resid[ok]
lam <- lam[ok]
effect <- effect[ok]
insubregion <- insubregion[ok]
Z <- Z[ok]
wts <- wts[ok]
}
####################################################
# assemble data for smoothing
x <- covvalues
y <- resid/wts
if(smooth.effect) y <- y + effect
w <- wts
#
if(makefrom <- is.null(from))
from <- min(x)
if(maketo <- is.null(to))
to <- max(x)
####################################################
# determine smoothing bandwidth
# from 'operative' data
switch(bw.input,
quad = {
# bandwidth selection from covariate values at all quadrature points
numer <- unnormdensity(x, weights=w*y,
bw=bw, adjust=adjust,
n=n,from=from,to=to, ...)
sigma <- numer$bw
},
points= {
# bandwidth selection from covariate values at data points
fake <- unnormdensity(x[Z], weights=1/lam[Z],
bw=bw, adjust=adjust,
n=n,from=from,to=to, ...)
sigma <- fake$bw
numer <- unnormdensity(x, weights=w*y,
bw=sigma, adjust=1,
n=n,from=from,to=to, ...)
})
####################################################
# Restrict data and recompute numerator if required
if(!is.null(subregion) && !bw.restrict) {
# Bandwidth was computed on all data
# Restrict to subregion and recompute numerator
if(sum(insubregion) < 2) {
warning("Not enough useable data in subregion; returning NULL")
return(NULL)
}
x <- x[insubregion]
y <- y[insubregion]
w <- w[insubregion]
Z <- Z[insubregion]
lam <- lam[insubregion]
if(makefrom) from <- min(x)
if(maketo) to <- max(x)
numer <- unnormdensity(x, weights=w*y,
bw=sigma, adjust=1,
n=n,from=from,to=to, ...)
}
####################################################
# Compute denominator
denom <- unnormdensity(x, weights=w,
bw=sigma, adjust=1,
n=n,from=from,to=to, ...)
####################################################
# Determine recommended plot range
alim <- c(from, to)
nZ <- sum(Z)
if(nZ > 5) {
xr <- range(as.vector(x[Z]), finite=TRUE)
alimx <- xr + 0.1 * diff(xr) * c(-1,1)
alim <- intersect.ranges(alim, alimx)
}
####################################################
# Compute terms
interpolate <- function(x,y) {
if(inherits(x, "density") && missing(y))
approxfun(x$x, x$y, rule=2)
else
approxfun(x, y, rule=2)
}
numfun <- interpolate(numer)
denfun <- interpolate(denom)
xxx <- numer$x
yyy <- numfun(xxx)/denfun(xxx)
# variance estimation
# smooth 1/lambda(u) with smaller bandwidth
tau <- sigma/sqrt(2)
varnumer <- unnormdensity(x, weights=w/lam,
bw=tau, adjust=1,
n=n,from=from,to=to, ...)
varnumfun <- interpolate(varnumer)
varestxxx <- varnumfun(xxx)/(2 * sigma * sqrt(pi) * denfun(xxx)^2)
sd <- sqrt(varestxxx)
# alternative estimate of variance using data points only
if(nZ > 1) {
varXnumer <- unnormdensity(x[Z], weights=1/lam[Z]^2,
bw=tau, adjust=1,
n=n,from=from,to=to, ...)
varXnumfun <- interpolate(varXnumer)
varXestxxx <- varXnumfun(xxx)/(2 * sigma * sqrt(pi) * denfun(xxx)^2)
sdX <- sqrt(varXestxxx)
} else sdX <- rep(NA, length(xxx))
# fitted effect
effxxx <- effectFun(xxx)
# add fitted effect of covariate, if not added before smoothing
if(!smooth.effect)
yyy <- yyy + effxxx
####################################################
# pack into fv object
df <- data.frame(xxx=xxx,
h =yyy,
varh=varestxxx,
hi=yyy+2*sd,
lo=yyy-2*sd,
hiX=yyy+2*sdX,
loX=yyy-2*sdX,
fit=effxxx)
# remove any funny characters in name of covariate (e.g. if it is an offset)
Covname <- make.names(covname)
names(df)[1] <- Covname
desc <- c(paste("covariate", sQuote(covname)),
"Smoothed partial residual",
"Variance",
"Upper limit of pointwise 5%% significance band (integral)",
"Lower limit of pointwise 5%% significance band (integral)",
"Upper limit of pointwise 5%% significance band (sum)",
"Lower limit of pointwise 5%% significance band (sum)",
paste("Parametric fitted effect of", sQuote(covname)))
rslt <- fv(df,
argu=Covname,
ylab=substitute(h(X), list(X=as.name(covname))),
valu="h",
fmla= as.formula(paste(". ~ ", Covname)),
alim=alim,
labl=c(covname,
paste("%s", paren(covname), sep=""),
paste("var", paren(covname), sep=""),
paste("hi", paren(covname), sep=""),
paste("lo", paren(covname), sep=""),
paste("hiX", paren(covname), sep=""),
paste("loX", paren(covname), sep=""),
paste("fit", paren(covname), sep="")),
desc=desc,
fname="h",
yexp=as.expression(substitute(hat(h)(X), list(X=covname))))
attr(rslt, "dotnames") <- c("h", "hi", "lo", "fit")
fvnames(rslt, ".s") <- c("hi", "lo")
# add special class data
class(rslt) <- c("parres", class(rslt))
attr(rslt, "stuff") <- list(covname = paste(covname, collapse=""),
covtype = covtype,
mediator = mediator,
cancovs = cancovs,
canbeta = canbeta,
isoffset = isoffset,
modelname = modelname,
modelcall = modelcall,
callstring = callstring,
sigma = sigma,
smooth.effect = smooth.effect,
restricted = !is.null(subregion),
bw.input = bw.input)
return(rslt)
}
print.parres <- function(x, ...) {
cat("Transformation diagnostic (class parres)\n")
s <- attr(x, "stuff")
cat(paste("for the", s$covtype, "covariate", sQuote(s$covname),
if(s$covtype != "external") "in" else "for",
"the fitted model",
if(nchar(s$modelcall) < 30) "" else "\n\t",
s$modelcall, "\n"))
switch(s$covtype,
original={
cancovs <- s$cancovs
med <- s$mediator
isoffset <- s$isoffset
if(is.null(isoffset)) isoffset <- rep.int(FALSE, length(cancovs))
ncc <- length(cancovs)
nfitted <- sum(!isoffset)
noff <- sum(isoffset)
explainfitted <- explainoff <- character(0)
if(noff > 0)
explainoff <- paste("offset",
ngettext(noff, "term", "terms"),
commasep(dQuote(cancovs[isoffset])))
if(nfitted > 0)
explainfitted <- paste(
paste(med[med != "offset"], collapse=" and "),
ngettext(nfitted, "term", "terms"),
commasep(dQuote(cancovs[!isoffset])))
splat("Fitted effect: ",
if(ncc > 1) "sum of" else NULL,
paste(c(explainfitted, explainoff), collapse=" and "))
},
external={
cat("Note: effect estimate not justified by delta method\n")
},
offset={},
canonical={})
# earlier versions were equivalent to restricted=FALSE
if(identical(s$restricted, TRUE))
cat("\t--Diagnostic computed for a subregion--\n")
cat(paste("Call:", s$callstring, "\n"))
cat(paste("Actual smoothing bandwidth sigma =", signif(s$sigma,5), "\n"))
# earlier versions were equivalent to smooth.effect=TRUE
sme <- !identical(s$smooth.effect, FALSE)
if(sme) {
cat("Algorithm: smooth(effect + residual)\n\n")
} else {
cat("Algorithm: effect + smooth(residual)\n\n")
}
NextMethod("print")
}
plot.parres <- function(x, ...) {
xname <- short.deparse(substitute(x))
force(x)
do.call(plot.fv, resolve.defaults(list(quote(x)), list(...),
list(main=xname, shade=c("hi", "lo"))))
}
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.