View source: R/visualization.R
netVisual_bubble | R Documentation |
The dot color and size represent the calculated communication probability and p-values.
netVisual_bubble(
object,
sources.use = NULL,
targets.use = NULL,
signaling = NULL,
pairLR.use = NULL,
sort.by.source = FALSE,
sort.by.target = FALSE,
sort.by.source.priority = TRUE,
color.heatmap = c("Spectral", "viridis"),
n.colors = 10,
direction = -1,
thresh = 0.05,
comparison = NULL,
group = NULL,
remove.isolate = FALSE,
max.dataset = NULL,
min.dataset = NULL,
min.quantile = 0,
max.quantile = 1,
line.on = TRUE,
line.size = 0.2,
color.text.use = TRUE,
color.text = NULL,
title.name = NULL,
font.size = 10,
font.size.title = 10,
show.legend = TRUE,
grid.on = TRUE,
color.grid = "grey90",
angle.x = 90,
vjust.x = NULL,
hjust.x = NULL,
return.data = FALSE
)
object |
CellChat object |
sources.use |
a vector giving the index or the name of source cell groups |
targets.use |
a vector giving the index or the name of target cell groups. |
signaling |
a character vector giving the name of signaling pathways of interest |
pairLR.use |
a data frame consisting of one column named either "interaction_name" or "pathway_name", defining the interactions of interest and the order of L-R on y-axis |
sort.by.source, sort.by.target, sort.by.source.priority |
set the order of interacting cell pairs on x-axis; please check examples for details |
color.heatmap |
A character string or vector indicating the colormap option to use. It can be the avaibale color palette in viridis_pal() or brewer.pal() |
n.colors |
number of basic colors to generate from color palette |
direction |
Sets the order of colors in the scale. If 1, the default colors are used. If -1, the order of colors is reversed. |
thresh |
threshold of the p-value for determining significant interaction |
comparison |
a numerical vector giving the datasets for comparison in the merged object; e.g., comparison = c(1,2) |
group |
a numerical vector giving the group information of different datasets; e.g., group = c(1,2,2) |
remove.isolate |
whether remove the entire empty column, i.e., communication between certain cell groups |
max.dataset |
a scale, keep the communications with highest probability in max.dataset (i.e., certrain condition) |
min.dataset |
a scale, keep the communications with lowest probability in min.dataset (i.e., certrain condition) |
min.quantile, max.quantile |
minimum and maximum quantile cutoff values for the colorbar, may specify quantile in [0,1] |
line.on |
whether add vertical line when doing comparison analysis for the merged object |
line.size |
size of vertical line if added |
color.text.use |
whether color the xtick labels according to the dataset origin when doing comparison analysis |
color.text |
the colors for xtick labels according to the dataset origin when doing comparison analysis |
title.name |
main title of the plot |
font.size, font.size.title |
font size of all the text and the title name |
show.legend |
whether show legend |
grid.on, color.grid |
whether add grid |
angle.x, vjust.x, hjust.x |
parameters for adjusting the rotation of xtick labels |
return.data |
whether return the data.frame for replotting |
## Not run:
# show all the significant interactions (L-R pairs) from some cell groups (defined by 'sources.use') to other cell groups (defined by 'targets.use')
netVisual_bubble(cellchat, sources.use = 4, targets.use = c(5:11), remove.isolate = FALSE)
# show all the significant interactions (L-R pairs) associated with certain signaling pathways
netVisual_bubble(cellchat, sources.use = 4, targets.use = c(5:11), signaling = c("CCL","CXCL"))
# show all the significant interactions (L-R pairs) based on user's input (defined by `pairLR.use`; the order of L-R is also based on user's input)
pairLR.use <- extractEnrichedLR(cellchat, signaling = c("CCL","CXCL","FGF"))
netVisual_bubble(cellchat, sources.use = c(3,4), targets.use = c(5:8), pairLR.use = pairLR.use, remove.isolate = TRUE)
# set the order of interacting cell pairs on x-axis
# (1) Default: first sort cell pairs based on the appearance of sources in levels(object@idents), and then based on the appearance of targets in levels(object@idents)
# (2) sort cell pairs based on the targets.use defined by users
netVisual_bubble(cellchat, targets.use = c("LC","Inflam. DC","cDC2","CD40LG+ TC"), pairLR.use = pairLR.use, remove.isolate = TRUE, sort.by.target = T)
# (3) sort cell pairs based on the sources.use defined by users
netVisual_bubble(cellchat, sources.use = c("FBN1+ FIB","APOE+ FIB","Inflam. FIB"), pairLR.use = pairLR.use, remove.isolate = TRUE, sort.by.source = T)
# (4) sort cell pairs based on the sources.use and then targets.use defined by users
netVisual_bubble(cellchat, sources.use = c("FBN1+ FIB","APOE+ FIB","Inflam. FIB"), targets.use = c("LC","Inflam. DC","cDC2","CD40LG+ TC"), pairLR.use = pairLR.use, remove.isolate = TRUE, sort.by.source = T, sort.by.target = T)
# (5) sort cell pairs based on the targets.use and then sources.use defined by users
netVisual_bubble(cellchat, sources.use = c("FBN1+ FIB","APOE+ FIB","Inflam. FIB"), targets.use = c("LC","Inflam. DC","cDC2","CD40LG+ TC"), pairLR.use = pairLR.use, remove.isolate = TRUE, sort.by.source = T, sort.by.target = T, sort.by.source.priority = FALSE)
# show all the increased interactions in the second dataset compared to the first dataset
netVisual_bubble(cellchat, sources.use = 4, targets.use = c(5:8), remove.isolate = TRUE, max.dataset = 2)
# show all the decreased interactions in the second dataset compared to the first dataset
netVisual_bubble(cellchat, sources.use = 4, targets.use = c(5:8), remove.isolate = TRUE, max.dataset = 1)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.