plot_heatmap_for_marker_genes: Plot heatmap for identified marker genes

View source: R/SingleCellPlots.R

plot_heatmap_for_marker_genesR Documentation

Plot heatmap for identified marker genes

Description

Plot heatmap for identified marker genes

Usage

plot_heatmap_for_marker_genes(
  object,
  cluster.type = c("walktrap", "louvain", "kmeans", "merged_louvain", "merged_walktrap",
    "merged_kmeans"),
  n.TopGenes = 5,
  min.log2FC = 0.5,
  min.expFraction = 0.3,
  isClusterByRow = F,
  col.scaled.min = -2.5,
  col.scaled.max = 2.5,
  col.low = "blue",
  col.mid = "black",
  col.high = "red",
  rowFont.size = 6,
  split.line.col = "white",
  split.line.type = 1,
  split.line.lwd = 1,
  use_raster = FALSE
)

Arguments

object

The SingCellaR object.

cluster.type

The clustering method name.

n.TopGenes

The number of top differential genes. Default 5

min.log2FC

The minimum log2FC cutoff. Default 0.5

min.expFraction

The minimum cutoff for the fraction of expressing cell frequency. Default 0.3

isClusterByRow

is logical. If TRUE, the clustering by row will be performed.

col.scaled.min

The minimum scaled value. Default -2.5

col.scaled.max

The maximum scaled value. Default 2.5

col.low

The low color gradient. Default blue

col.mid

The mid color gradient. Default black

col.high

The high color gradient. Default red

rowFont.size

The row font size. Default 6

split.line.col

The split line color. Default white

split.line.type

The split line type. Default 1

split.line.lwd

The split line lwd. Default 1

use_raster

Whether render the heatmap body as a raster image. It helps to reduce file size when the matrix is huge.


supatt-lab/SingCellaR documentation built on Aug. 24, 2023, 5:49 p.m.