diffInstructions: The measurement of the variation of the total redundancy

Description Usage Arguments Details Author(s) References Examples

Description

This function measures the variation of the total redundancy.

Usage

1
diffInstructions(training.set, HX, HXmax, Herror, Redundancia_corregida)

Arguments

training.set

A set of aligned nucleotide sequences

HX

Entropy

HXmax

Maximum entropy

Herror

Entropy error. Correction of the Finite Sample Size Effect

Redundancia_corregida

Redundancy correction of the Finite Sample Size Effect

Details

This function depends on detector_1erOrdre_diff

Author(s)

Joan Maynou <joan.maynou@upc.edu>

References

J. Maynou, J.-J. Gallardo-Chacon, M. Vallverdu, P. Caminal, and A. Perera, Computational detection of transcription factor binding sites through differential renyi entropy, Information Theory, IEEE Transactions on, vol. 56, no. 2, pp. 734, feb. 2010.

Examples

1
2
3
4
5
6
7
8
9
data(iicc)
training.set<-iicc$Transcriptionfactor
q<-1
correction<-correction.entropy(q,p=nrow(training.set),long=1,iicc)
Herror<-slot(correction,"Herror")
HXmax<-iicc$HXmax
HX<-iicc$Entropy[[1]]
Redundancia_corregida<-CalculRedundancy(training.set,q,iicc)
diffInstructions (training.set,HX,HXmax,Herror,Redundancia_corregida)

MEET documentation built on May 2, 2019, 5:52 p.m.