Nothing
varImp <- function(model, imp.type = "each", relative = TRUE, reorder = TRUE, group.cats = FALSE, n.per = 10, data = NULL, n.trees = 100, plot = TRUE, plot.type = "lollipop", error.bars = "sd", ylim = "auto0", col = c("steelblue4", "coral2"), plot.points = TRUE, legend = TRUE, grid = TRUE, verbosity = 2, ...) {
# version 2.8 (21 Jun 2025)
# if 'col' has length 2 and varImp has negative values (e.g. for z-value), those will get the second colour
imp.type <- match.arg(imp.type, c("each", "permutation"))
plot.type <- match.arg(plot.type, c("lollipop", "barplot", "boxplot"))
stopifnot(# is.numeric(error.bars) || error.bars %in% c("sd", "range"),
is.logical(TRUE),
is.logical(plot),
is.logical(plot.points),
is.logical(legend),
is.logical(grid),
length(col) %in% 1:2
)
# is_bart <- inherits(model, "bart") || inherits(model, "pbart") || inherits(model, "lbart")
is_bart <- inherits(model, c("bart", "pbart", "lbart"))
is_flexbart <- inherits(model, "list") && c("varcounts", "trees") %in% names(model)
if ((is_bart || is_flexbart) && imp.type == "permutation")
stop("imp.type='permutation' not yet implemented for BART models")
if (!is_bart && !is_flexbart) error.bars <- NA
if (reorder && is_flexbart && is.null(colnames(model[["varcounts"]]))) {
reorder <- FALSE
if (verbosity > 0) message ("'reorder' set to FALSE, as this version of 'flexBART' does not carry variable names, which would make it impossible to match variables with importance values. Variables are in the order in which they were provided to the 'flexBART' model, with the continuous preceding the categorical ones. Update 'flexBART' if you want the variables named and reordered.")
}
if ((inherits(model, c("Gam", "gam", "maxnet")) && imp.type == "each")) {
warning("'imp.type' changed to 'permutation', as 'each' is not implemented for this class of 'model'.")
imp.type <- "permutation"
} # this must come before glm; as gam is also class glm
if (imp.type == "each") {
if (inherits(model, "glm")) { # && !inherits(model, "Gam")
if (family(model)$family != "binomial") stop ("This function is currently only implemented for binary-response models of family 'binomial'.")
# if (measure == "z") {
metric <- ifelse(isTRUE(relative), "Relative z value", "Absolute z value")
if (verbosity > 1) cat("\nMetric:", metric, "\n\n")
varimp <- summary(model)$coefficients[-1, "z value"]
if (isTRUE(relative)) varimp <- varimp / sum(abs(varimp))
ylab <- metric
# }
# if (measure == "Wald") { # requires 'fuzzySim' and 'aod'
# ylab <- "Wald"
# legend <- FALSE
# smry <- summaryWald(model, interceptLast = FALSE)[-1, ]
# varimp <- smry[ , "Wald"]
# names(varimp) <- rownames(smry)
# varimp <- varimp[order(varimp, decreasing = TRUE)]
# }
} # end if glm
else if (inherits(model, "gbm")) {
# requireNamespace("gbm") # would require a suggest/depend
if ("gbm" %in% .packages()) {
metric <- "Relative influence"
if (verbosity > 1) cat("\nMetric:", metric, "\n\n")
ylab <- metric
smry <- summary(model, plotit = FALSE)
varimp <- smry[ , "rel.inf"] / 100
names(varimp) <- smry[ , "var"]
} else {
stop("package 'gbm' needs to be loaded first.")
}
}
else if (inherits(model, "GBMFit")) {
if ("gbm3" %in% .packages()) {
metric <- "Relative influence"
if (verbosity > 1) cat("\nMetric:", metric, "\n\n")
ylab <- metric
smry <- summary(model, plot_it = FALSE)
varimp <- smry[ , "rel_inf"] / 100
names(varimp) <- smry[ , "var"]
} else {
stop("package 'gbm3' needs to be loaded first.")
}
}
else if (inherits(model, "randomForest")) {
metric <- colnames(model$importance)
if (verbosity > 1) cat("\nMetric:", metric, "\n\n")
varimp <- model$importance # / nrow(model$importance) / 100 # doesn't work well for mean accuracy decrease
names(varimp) <- rownames(model$importance)
ylab <- metric
}
else if (is_bart || is_flexbart) {
# metric <- "Proportion of splits used"
metric <- ifelse(isTRUE(relative), "Proportion of splits used", "Number of splits used")
if (verbosity > 1) cat("\nMetric:", metric, "\n\n")
ylab <- metric
if ("varcounts" %in% names(model)) { # in flexBART models
names(model)[grep("varcounts", names(model))] <- "varcount" # to homogenize
}
# varimps <- model[["varcount"]] / rowSums(model[["varcount"]])
varimps <- model[["varcount"]]
if (isTRUE(relative)) varimps <- varimps / rowSums(model[["varcount"]])
varimp <- colMeans(varimps)
if (group.cats) {
if (inherits(model, "bart")) {
cat.vars <- names(which(lapply(attr(model$fit$data@x, "drop"), length) > 1))
names.nosuffix <- names(varimp)
for (v in cat.vars) {
v.inds <- grep(v, colnames(model$fit$data@x))
names.nosuffix[v.inds] <- v
}
}
# else if (inherits(model, "pbart") || inherits(model, "lbart")) {
else if (inherits(model, c("pbart", "lbart"))) {
names.nosuffix <- gsub("[0-9]+$", "", colnames(model$varcount))
} # but WATCH OUT: other variables with numeric suffix (e.g. "o2" and "o3") will be grouped too! also cat vars with same name but different numeric suffix, e.g. "var" and "var2"
if (!is_flexbart) {
varimp.df <- data.frame(names = names.nosuffix, varimp, row.names = NULL)
varimp.df <- aggregate(varimp.df$varimp, by = list(varimp.df$names), FUN = sum)
varimp <- varimp.df$x
names(varimp) <- varimp.df$Group.1
colnames(varimps) <- names.nosuffix
varimps.agg <- apply(varimps, 1, aggregate, sum, by = list(colnames(varimps)))
varimps.agg <- lapply(varimps.agg, getElement, "x")
varimps <- do.call(rbind.data.frame, varimps.agg)
colnames(varimps) <- names(varimp)
}
} # end if group.cats
if (inherits(model, "bart")) { # || inherits(model, "pbart") || inherits(model, "lbart")
if (is.null(model$fit)) {
stop("'model' does not contain the required info; please compute it with keeptrees=TRUE")
}
if (is.null(colnames(model$fit$data@x))) {
# colnames(model$fit$data@x) <- paste0("X", 1:ncol(model$fit$data@x)) # didn't work, pbb because other attributes were missing
stop("'model' does not have predictor attributes; please compute it with column names in the predictor variables")
}
# if (inherits(model, "bart"))
dropped.vars <- names(which(unlist(attr(model$fit$data@x, "drop")) == 1))
# else dropped.vars <- colnames(model$varcount)[model$rm.const] # no, because these names already have the cat vars divided and renamed according to their factor levels, so the 'rm.const' indices do not correctly match the original var names
n.dropped <- length(dropped.vars)
if (n.dropped > 0) {
if (verbosity > 0) message("The following variables had been automatically dropped by the model (e.g. for having no variability): ", paste(dropped.vars, collapse = ", "))
dropped.varimp <- rep(0, n.dropped)
names(dropped.varimp) <- dropped.vars
varimp <- c(varimp, dropped.varimp)
varimps[ , dropped.vars] <- 0
}
}
} # end if bart
# else if (inherits(model, "maxnet")) {
#
# if (imp.type == "each") {
# if (verbosity > 0) warning("'imp.type' changed to 'permutation', as 'each' is not implemented for this class of 'model'.")
# imp.type <- "permutation"
# }
#
# }
else stop ("'model' is of a non-implemented class.")
} # end if imp.type = "each"
if (imp.type == "permutation") { # do not use 'else', to allow imp.type changes above
metric <- "Permutation importance"
# if (inherits(model, "glm") || inherits(model, "Gam") || inherits(model, "gam") || inherits(model, "gbm") || inherits(model, "GBMFit"))
if (inherits(model, c("glm", "Gam", "gam", "gbm", "GBMFit")))
pred.type <- "response"
else if (inherits(model, "randomForest"))
pred.type <- "prob"
else if (is_bart)
pred.type <- "ev"
else if (inherits(model, "maxnet"))
pred.type <- "cloglog"
if (is.null(data)) {
data <- as.data.frame(mod2obspred(model, x.only = TRUE))
names(data) <- gsub("s\\(|\\)", "", names(data)) # for gam models
}
if (inherits(model, "bart"))
original_predictions <- as.vector(predict(model, as.data.frame(data), type = pred.type))
else
original_predictions <- as.vector(predict(model, as.data.frame(data), type = pred.type, n.trees = n.trees))
varimp <- numeric(ncol(data))
for (v in seq_along(varimp)) {
permuted_scores <- numeric(n.per)
for (p in 1:n.per) {
permuted_data <- data
permuted_data[ , v] <- sample(permuted_data[ , v])
if (inherits(model, "bart"))
permuted_predictions <- as.vector(predict(model, as.data.frame(data)))
else
permuted_predictions <- as.vector(predict(model, as.data.frame(permuted_data), type = pred.type))
permuted_scores[p] <- sqrt(mean((original_predictions - permuted_predictions) ^ 2)) # RMSE
}
varimp[v] <- mean(permuted_scores)
} # end for v
if (relative) {
divisor <- sum(varimp)
if (isTRUE(all.equal(divisor, 0))) divisor <- divisor + 0.00001
varimp <- varimp / divisor
}
names(varimp) <- colnames(data)
} # end if imp.type="perm"
if (reorder) {
varimp <- varimp[order(abs(varimp), decreasing = TRUE)]
if (is_bart) varimps <- varimps[ , names(varimp)]
}
if (!is.na(error.bars)) {
if (error.bars == "sd") {
vsd <- sapply(as.data.frame(varimps), sd)
eb_lower <- varimp - vsd
eb_upper <- varimp + vsd
} else if (error.bars == "range") {
eb_lower <- apply(varimps, 2, min)
eb_upper <- apply(varimps, 2, max)
} else if (is.numeric(error.bars) && length(error.bars) == 1 && error.bars >= 0 && error.bars <= 1) {
quants <- sapply(data.frame(varimps), quantile, probs = c(1 - error.bars, error.bars))
eb_lower <- quants[1, ]
eb_upper <- quants[2, ]
} else stop ("Invalid 'error.bars' argument; see help for valid options.")
} # end if error.bars
if (plot) {
plot.args <- list(...) # https://www.r-bloggers.com/2020/11/some-notes-when-using-dot-dot-dot-in-r/
if (!("horiz" %in% names(plot.args)))
plot.args$horiz <- FALSE
if (!("xlab" %in% names(plot.args)))
plot.args$xlab <- ifelse(isTRUE(plot.args$horiz), metric, "")
if (!("ylab" %in% names(plot.args)))
plot.args$ylab <- ifelse(isTRUE(plot.args$horiz), "", metric)
if (length(col) == 1) col <- rep(col, 2)
colrs <- ifelse(varimp >= 0, col[1], col[2])
if (length(grep("auto", ylim)) > 0) {
if ("auto0" %in% ylim) ymin <- 0
else ymin <- ifelse(!is.na(error.bars), min(varimps), min(abs(varimp)))
ymax <- ifelse(!is.na(error.bars), max(varimps), max(abs(varimp)))
ylim <- c(ymin, ymax)
}
if (plot.type == "lollipop") {
sticks <- ifelse(is.na(error.bars), TRUE, FALSE)
do.call(lollipop,
c(list(abs(varimp),
col = colrs,
names = names(varimp),
ylim = ylim,
las = 2,
sticks = sticks,
grid = grid),
plot.args))
if (!is.na(error.bars)) {
arrows(x0 = 1:length(varimp), x1 = 1:length(varimp), y0 = eb_lower, y1 = eb_upper, code = 3, angle = 90, length = 0.03, col = colrs)
}
} # end if lollipop
if (plot.type == "barplot") {
space <- 0.25 # re-used if plot.points & error.bars
do.call(barplot,
c(list(height = abs(varimp),
col = colrs,
border = NA,
space = space,
names = names(varimp),
ylim = ylim,
xpd = FALSE,
las = 2),
plot.args
)
)
if (grid) grid()
if (plot.points || !is.na(error.bars)) {
nbars <- length(names(varimp))
xbars <- ((1 : nbars) - space) + space * (0 : (nbars - 1))
}
if (!is.na(error.bars)) {
arrows(x0 = xbars, x1 = xbars, y0 = eb_lower, y1 = eb_upper, angle = 90, code = 3, length = 0.03, col = "#10133a")
}
} # end if barplot
if (plot.type == "boxplot") {
if(is.na(error.bars)) vi <- t(as.data.frame(abs(varimp))) else vi <- varimps # ifelse makes single boxplot for all vars
boxplot(vi,
col = adjustcolor(colrs, alpha.f = 0.2),
border = colrs,
ylab = ylab,
ylim = ylim,
las = 2,
...)
if (grid) grid()
} # end if boxplot
if (plot.points && (is_bart || is_flexbart)) {
if (plot.type == "barplot") xx <- rep(xbars, each = nrow(varimps))
else xx <- rep(1:ncol(varimps), each = nrow(varimps))
jj <- sapply(xx, jitter, amount = 0.1)
points(x = jj, y = as.matrix(varimps), pch = 20, cex = 0.1, col = adjustcolor("#ffaabb", alpha.f = 0.3))
if (plot.type == "lollipop") {
points(abs(varimp), pch = 20, col = colrs)
arrows(x0 = 1:length(varimp), x1 = 1:length(varimp), y0 = eb_lower, y1 = eb_upper, code = 3, angle = 90, length = 0.03, col = colrs)
} # re-plot on top of points for better visibility
if (plot.type == "barplot") {
arrows(x0 = xbars, x1 = xbars, y0 = eb_lower, y1 = eb_upper, angle = 90, code = 3, length = 0.03, col = "#10133a")
} # re-plot on top of points for better visibility
} # end if plot.points
signs <- unique(sign(varimp)[sign(varimp) != 0]) # check for both negative and positive varimps
if (legend && length(signs) > 1) legend("topright", legend = c("positive", "negative"), fill = col, border = NA, bty = "n")
} # end if plot
if (is.na(error.bars)) return(abs(varimp))
return (data.frame(Mean = varimp, Lower = eb_lower, Upper = eb_upper))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.