tests/subsample.R

### test subsample
### LU decomposition and singular subsamples handling
require(robustbase)
source(system.file("xtraR/subsample-fns.R", package = "robustbase", mustWork=TRUE))
## instead of relying on  system.file("test-tools-1.R", package="Matrix"):
source(system.file("xtraR/test-tools.R", package = "robustbase")) # assert.EQ(), showProc.time() ..
options(nwarnings = 4e4, warnPartialMatchArgs = FALSE)

cat("doExtras:", doExtras <- robustbase:::doExtras(),"\n")
showProc.time()

A <- rbind(c(0.001, 1),
           c(1,     2))
set.seed(11)
## IGNORE_RDIFF_BEGIN
sa <- tstSubsample(A) # (now typically also shows Matrix version ..)
## IGNORE_RDIFF_END
str(sa)

A <- rbind(c(3, 17, 10),
           c(2,  4, -2),
           c(6, 18, 12))
tstSubsample(A)

## test some random matrix
set.seed(1002)
A <- matrix(rnorm(100), 10)
tstSubsample(A)

## test singular matrix handling
A <- rbind(c(1, 0, 0),
           c(0, 1, 0),
           c(0, 1, 0),
           c(0, 0, 1))
tstSubsample(A)


## test subsample with mts > 0
data <- data.frame(y = rnorm(9), expand.grid(A = letters[1:3], B = letters[1:3]))
x <- model.matrix(y ~ ., data)
y <- data$y
## this should produce a warning and return status == 2
showSys.time(z <- Rsubsample(x, y, mts=2))
stopifnot(identical(2L, z$status)) # (z$status may be NULL; stopifnot(NULL) does not trigger)


## test equilibration
## columns only
X <- rbind(c(1e-7, 1e-10),
           c(2   , 0.2))
y <- 1:2
tstSubsample(t(X), y)

## rows only
X <- rbind(c(1e-7, 1e+10),
           c(2   , 0.2))
y <- 1:2
tstSubsample(X, y)

## both
X <- rbind(c(1e-7,  2  ),
           c(1e10, 2e12))
y <- 1:2
tstSubsample(X, y)
showProc.time()


## test real data example
data(possumDiv)## 151 * 9; the last two variables are factors
with(possumDiv, table(eucalyptus, aspect))

mf <- model.frame(Diversity ~ .^2, possumDiv)
X <- model.matrix(mf, possumDiv)
ncol(X) # 63
y <- model.response(mf)
stopifnot(identical(qr(X)$rank, ncol(X)))

## this used to fail: different pivots in step 37
str(s1 <- tstSubsample(X, y))
s2 <- tstSubsample(X / max(abs(X)), y / max(abs(X)))
s3 <- tstSubsample(X * 2^-50, y * 2^-50)
## all components *BUT*  x, y, lu, Dr, Dc, rowequ, colequ :
nm <- names(s1); nm <- nm[is.na(match(nm, c("x","y","lu", "Dr", "Dc", "rowequ", "colequ")))]
stopifnot(all.equal(s1[nm], s2[nm], tolerance=1e-10),
	  all.equal(s1[nm], s3[nm], tolerance=1e-10))
showProc.time()

set.seed(10)
nsing <- sum(replicate(if(doExtras) 200 else 20, tstSubsampleSing(X, y)))
stopifnot(nsing == 0)
showProc.time()

## test example with many categorical predictors - 2 different random seeds:
set.seed(10) ; r1 <- lmrob(Diversity ~ .^2 , data = possumDiv, cov="none")
set.seed(108); r2 <- lmrob(Diversity ~ .^2 , data = possumDiv, cov="none")# lmrob.S() failed
(i1 <- r1$init) # print(<lmrob.S>)
(i2 <- r1$init) # ... and they are "somewhat" close:
stopifnot(all.equal(r1[names(r1) != "init.S"],
                    r2[names(r2) != "init.S"], tol = 0.40))
c1 <- coef(r1)
c2 <- coef(r2)
relD <- (c1-c2)*2/(c1+c2)
xCf <- which(abs(relD) >= 10)
stopifnot(exprs = {
    identical(xCf, c(`Bark:aspectSW-NW` = 46L))
    all.equal(c1[-xCf], c2[-xCf], tol = 0.35) # 0.3418
    sign(c1[-xCf]) == sign(c2[-xCf])
})
showProc.time()

## investigate problematic subsample:
idc <- 1 + c(140, 60, 12, 13, 89, 90, 118, 80, 17, 134, 59, 94, 36,
         43, 46, 93, 107, 62, 57, 116, 11, 45, 35, 38, 120, 34, 29,
         33, 147, 105, 115, 92, 61, 91, 104, 141, 138, 129, 130, 84,
         119, 132, 6, 135, 112, 16, 67, 41, 102, 76, 111, 82, 148, 24,
         131, 10, 96, 0, 87, 21, 127, 56, 124)
rc <- lm(Diversity ~ .^2 , data = possumDiv, subset = idc)

X <- model.matrix(rc)
y <- possumDiv$Diversity[idc]
tstSubsample(X, y)## have different pivots ... could not find non-singular

lu <- LU.gaxpy(t(X))
stopifnot(length(lusi <- lu$sing) >= 1, lusi)
zc <- Rsubsample(X, y)
stopifnot(length(st <- zc$status) > 0, st > 0)
## column 52 is linearly dependent and should have been discarded
## qr(t(X))$pivot

image(as(round(zc$lu -      (lu$L + lu$U - diag(nrow(lu$U))), 10), "Matrix"))
image(as( sign(zc$lu) - sign(lu$L + lu$U - diag(nrow(lu$U))),      "Matrix"))
showProc.time()

## test equilibration
## colequ only
X <- matrix(c(1e-7, 2, 1e-10, 0.2), 2)
y <- 1:2
tstSubsample(t(X), y)

## rowequ only
X <- matrix(c(1e-7, 2, 1e10, 0.2), 2)
y <- 1:2
tstSubsample(X, y)

## both
X <- matrix(c(1e-7, 1e10, 2, 2e12), 2)
y <- 1:2
tstSubsample(X, y)
showProc.time()

### real data, see MM's ~/R/MM/Pkg-ex/robustbase/hedlmrob.R
##  close to singular cov():
attach(system.file("external", "d1k27.rda", package="robustbase", mustWork=TRUE))

fm1 <- lmrob(y ~ a + I(a^2) + tf + I(tf^2) + A + I(A^2) + . , data = d1k27)
##     ^^^^^ gave error, earlier, now with a warning -- use ".vcov.w"
## --> cov = ".vcov.w"
fm2 <- lmrob(y ~ a + I(a^2) + tf + I(tf^2) + A + I(A^2) + . , data = d1k27,
             cov = ".vcov.w", trace = TRUE)
showProc.time()# 2.77

if(doExtras) withAutoprint({##---------------------------------------------------------

## Q: does it change to use numeric instead of binary factors ?
## A: not really ..
d1k.n <- d1k27
d1k.n[-(1:5)] <- lapply(d1k27[,-(1:5)], as.numeric)

fm1.n <- lmrob(y ~ a + I(a^2) + tf + I(tf^2) + A + I(A^2) + . , data = d1k.n)
fm2.n <- lmrob(y ~ a + I(a^2) + tf + I(tf^2) + A + I(A^2) + . , data = d1k.n,
             cov = ".vcov.w", trace = 2)

summary(weights(fm1, type="robustness"))
   hist(weights(fm1, type="robustness"), main="robustness weights of fm1")
rug(weights(fm1, type="robustness"))
showProc.time()## 2.88

##
fmc <- lm   (y ~ poly(a,2)-a + poly(tf, 2)-tf + poly(A, 2)-A + . , data = d1k27)
summary(fmc)
## -> has NA's for  'a, tf, A'  --- bad that it did *not* work to remove them

nform <- update(formula(fm1), ~ .
                +poly(A,2)  -A  -I(A^2)
                +poly(a,2)  -a  -I(a^2)
                +poly(tf,2) -tf -I(tf^2))

fm1. <- lmrob(nform, data = d1k27)# now w/o warning !? !!
fm2. <- lmrob(nform, data = d1k27, cov = ".vcov.w", trace = TRUE)

## now lmrob takes care of NA coefficients automatically
lmrob(y ~ poly(a,2)-a + poly(tf, 2)-tf + poly(A, 2)-A + . , data = d1k27)
showProc.time() ## 4.24
}) ## only if(doExtras) -----------------------------------------------------

## test exact fit property
set.seed(20)
data <- data.frame(y=c(rep.int(0, 20), round(100*rnorm(5))),
                   group=rep(letters[1:5], each=5))
x <- model.matrix(y ~ group, data)
(ini <- lmrob.S(x, data$y, lmrob.control()))
(ret <- lmrob(y ~ group, data))
summary(ret)
showProc.time() ## 4.24

##--- continuous x -- exact fit -- inspired by Thomas Mang's real data example
mkD9 <- function(iN, dN = 1:m) {
    stopifnot((length(iN) -> m) == length(dN), 1 <= m, m <= 5,
              iN == as.integer(iN), is.numeric(dN), !is.na(dN))
    x <- c(-3:0,0:1,1:3) # {n=9; sorted; x= 0, 1  are "doubled"}
    y <- x+5
    y[iN] <- y[iN] + dN
    data.frame(x,y)
}

mkRS <- function(...) { set.seed(...); .Random.seed }

d <- mkD9(c(1L,3:4, 7L))
rs2 <- mkRS(2)
Se <- tryCatch(error = identity,
               with(d, lmrob.S(cbind(1,x), y, lmrob.control("KS2014", seed=rs2))))
## gave DGELS rank error {for lmrob.c+wg..}

if(inherits(Se, "error")) {
    cat("Caught ")
    print(Se)
} else withAutoprint({ ## no error
    coef(Se)
    stopifnot(coef(Se) == c(5, 1)) # was (0 0)
    residuals(Se) # was == y  ---- FIXME
})

## try 100 different seeds
repS <- lapply(1:100, function(ii) tryCatch(error = identity,
                with(d, lmrob.S(cbind(1,x), y, lmrob.control("KS2014", seed = mkRS(ii))))))
if(FALSE)
 ## was
 str(unique(repS))## ==> 100 times the same error
## now completely different: *all* returned properly
str(cfS <- t(sapply(repS, coef))) # all numeric -- not *one* error --
## even all the *same* (5 1) solution:
(ucfS <- unique(cfS))
stopifnot(identical(ucfS, array(c(5, 1), dim = 1:2, dimnames = list(NULL, c("", "x")))))

## *Not* "KS2014" but the defaults works *all the time* (!)
repS0 <- lapply(1:100, function(ii) tryCatch(error = identity,
               with(d, lmrob.S(cbind(1,x), y, lmrob.control(seed = mkRS(ii))))))
summary(warnings())
## 100 identical warnings:
## In lmrob.S(cbind(1, x), y, lmrob.control(seed = mkRS(ii))) :
##   S-estimated scale == 0:  Probably exact fit; check your data

str(cfS0 <- t(sapply(repS0, coef))) # all numeric -- not *one* error
## even all the same *and* the same as "KS2014"
(ucfS0 <- unique(cfS0))
stopifnot(nrow(ucfS0) == 1L,
          ucfS0 == c(5,1))



d9L <- list(
    mkD9(c(1L,3L, 5L, 7L))
  , mkD9(c(1L,3L, 8:9))
  , mkD9(2L*(1:4))
)

if(doExtras) {
sfsmisc::mult.fig(length(d9L)); invisible(lapply(d9L, function(d) plot(y ~ x, data=d)))
}

dorob <- function(dat, control=lmrob.control(...), meth = c("S", "MM"),
                  doPl=interactive(), cex=1, ...) {
    meth <- match.arg(meth)
    stopifnot(is.data.frame(dat), c("x","y") %in% names(dat), is.list(control))
    if(doPl) plot(y ~ x, data=dat) ## with(dat, n.plot(x, y, cex=cex))
    ans <- tryCatch(error = identity,
                  switch(meth
                       , "S" = with(dat, lmrob.S(cbind(1,x), y, control))
                       , "MM"= lmrob(y ~ x, data = dat, control=control)
                       , stop("invalid 'meth'")))
    if(!doPl)
        return(ans)
    ## else
    if(!inherits(ans, "error")) {
        abline(coef(ans))
    } else { # error
        mtext(paste(paste0("lmrob.", meth), "Error:", conditionMessage(ans)))
    }
    invisible(ans)
}

## a bad case -- much better new robustbase >= 0.99-0
Se <- dorob(d9L[[1]], lmrob.control("KS2014", mkRS(2), trace.lev=4))
## was really bad -- ended returning  coef = (0 0); fitted == 0, residuals == 0 !!

if(doExtras) sfsmisc::mult.fig(length(d9L))
r0 <- lapply(d9L, dorob, seed=rs2, doPl=doExtras) # 3 x ".. exact fit" warning
if(doExtras) print(r0)
## back to 3 identical fits: (5 1)
(cf0 <- sapply(r0, coef))
stopifnot(cf0 == c(5,1))

if(doExtras) sfsmisc::mult.fig(length(d9L))
### Here, all 3 were "0-models"
r14 <- lapply(d9L, dorob, control=lmrob.control("KS2014", seed=rs2), doPl=doExtras)
## --> 3 (identical) warnings:   In lmrob.S(cbind(1, x), y, control) :#
##                        S-estimated scale == 0:  Probably exact fit; check your data
## now *does* plot
if(doExtras) print(r14)
## all 3 are "identical"
(cf14 <- sapply(r14, coef))
identical(cf0, cf14) # see TRUE; test a bit less:
stopifnot(all.equal(cf0, cf14, tol=1e-15))

## use "large n"
ctrl.LRG.n <- lmrob.control("KS2014", seed=rs2, trace.lev = if(doExtras) 2 else 1, # 3: too much (for now),
                            nResample = 60,
                            fast.s.large.n = 7, n.group = 3, groups = 2)
rLrg.n <- lapply(d9L, \(d) lmrob.S(cbind(1,d$x), d$y, ctrl.LRG.n))
summary(warnings())
sapply(rLrg.n, coef)
## currently ... ....  really would want always (5 1)
##      [,1] [,2]     [,3]
## [1,]    5    5 7.333333
## [2,]    1    1 1.666667


## ==> use  lmrob() instead of  lmrob.S():

mm0 <- lapply(d9L, dorob, meth = "MM", seed=rs2, doPl=doExtras) # looks all fine -- no longer: error in [[3]]
if(doExtras) print(mm0)
## now, the 3rd one errors (on Linux, not on M1 mac!)
(cm0 <- sapply(mm0, function(.) if(inherits(.,"error")) noquote(paste("Caught", as.character(.))) else coef(.)))

## no longer needed
c0.12 <- rbind(`(Intercept)` = c(5.7640215, 6.0267156),
               x             = c(0.85175883, 1.3823841))
if(is.list(cm0)) { ## after error {was on Linux+Win, not on M1 mac}:
    ## NB: This does *not* happen on Macbuilder -- there the result it cf = (5 1)  !!
    stopifnot(all.equal(tol = 1e-8, # seen 4.4376e-9
                        c0.12, simplify2array(cm0[1:2])))
    print(cm0[[3]])
    ## FIXME?:   Caught Error in eigen(ret, symmetric = TRUE): infinite or missing values in 'x'\n
} else if(is.matrix(cm0)) { # when no error happened
    k <- ncol(cm0)
    stopifnot(all.equal(tol = 1e-8, rbind(`(Intercept)` = rep(5,k), "x" = rep(1,k)), cm0))
} else warning("not yet encountered this case {and it should not happen}")


se3 <- lmrob(y ~ x, data=d9L[[3]], init = r0[[3]], seed=rs2, trace.lev=6)


if(doExtras) sfsmisc::mult.fig(length(d9L))
### Here, all 3 were "0-models"
##  now, have 3 *different* cases {with this seed}
## [1] : init fails (-> r14[[1]] above)
## [2] : init s=0, b=(5,1) .. but  residuals(),fitted() wrong
## [3] : init s=0, b=(5,1) ..*and* residuals(),fitted() are good

cm14 <- lapply(d9L, dorob, meth = "MM", control=lmrob.control("KS2014", seed=rs2), doPl=doExtras)
## now, first is error; for others, coef = (5, 1) are correct:
stopifnot(exprs = {
    sapply(cm14[-1], coef)  == c(5,1)
    sapply(cm14[-1], sigma) == 0
})

m2 <- cm14[[2]]
summary(m2) # prints quite nicely; and this is perfect (for scale=0), too:
## {residual != 0 <==> weights = 0}:
cbind(rwgt = weights(m2, "rob"), res = residuals(m2), fit = fitted(m2), y = d9L[[2]][,"y"])

sapply(cm14, residuals) ## now, [2] is good; [3] still wrong - FIXME
sapply(cm14, fitted)
sapply(cm14, weights, "robust")## [2]: 0 1 0 1 1 1 1 0 0;  [3]: all 0

## (unfinished ... do *test* once we've checked platform consistency)

summary(warnings())
showProc.time()

Try the robustbase package in your browser

Any scripts or data that you put into this service are public.

robustbase documentation built on Nov. 1, 2024, 3 p.m.