Nothing
# Copyright 2002-2003 by Roger Bivand and Marilia Carvalho
# Addition of Martuzzi and Elliott Copyright 2006 Olaf Berke and Roger Bivand
#
EBImoran <- function (z, listw, nn, S0, zero.policy = NULL, subtract_mean_in_numerator=TRUE)
{
#default subtract_mean_in_numerator=TRUE 160219 RA
if (is.null(zero.policy))
zero.policy <- get("zeroPolicy", envir = .spdepOptions)
stopifnot(is.logical(zero.policy))
stopifnot(is.vector(z))
zm <- mean(z)
zz <- sum((z - zm)^2)
if (subtract_mean_in_numerator) z <- z - zm
lz <- lag.listw(listw, z, zero.policy = zero.policy)
EBI <- (nn/S0) * (sum(z * lz)/zz)
res <- EBI
res
}
EBImoran.mc <- function (n, x, listw, nsim, zero.policy = NULL,
alternative = "greater", spChk = NULL, return_boot=FALSE, subtract_mean_in_numerator=TRUE)
{
#default subtract_mean_in_numerator=TRUE 160219 RA
message("The default for subtract_mean_in_numerator set TRUE from February 2016")
if (is.null(zero.policy))
zero.policy <- get("zeroPolicy", envir = .spdepOptions)
stopifnot(is.logical(zero.policy))
alternative <- match.arg(alternative, c("greater", "less"))
if (!inherits(listw, "listw"))
stop(paste(deparse(substitute(listw)), "is not a listw object"))
if (missing(nsim))
stop("nsim must be given")
m <- length(listw$neighbours)
if (m != length(x))
stop("objects of different length")
if (m != length(n))
stop("objects of different length")
if (is.null(spChk))
spChk <- get.spChkOption()
if (spChk && !chkIDs(x, listw))
stop("Check of data and weights ID integrity failed")
if (spChk && !chkIDs(n, listw))
stop("Check of data and weights ID integrity failed")
gamres <- suppressWarnings(nsim > gamma(m + 1))
if (gamres) stop("nsim too large for this number of observations")
if (nsim < 1) stop ("nsim too small")
S0 <- Szero(listw)
EB <- EBest(n, x)
p <- EB$raw
b <- attr(EB, "parameters")$b
a <- attr(EB, "parameters")$a
v <- a + (b/x)
v[v < 0] <- b/x
z <- (p - b)/sqrt(v)
if (return_boot) {
EBI_boot <- function(var, i, ...) {
var <- var[i]
return(EBImoran(z=var, ...))
}
cores <- get.coresOption()
if (is.null(cores)) {
parallel <- "no"
} else {
parallel <- ifelse (get.mcOption(), "multicore", "snow")
}
ncpus <- ifelse(is.null(cores), 1L, cores)
cl <- NULL
if (parallel == "snow") {
cl <- get.ClusterOption()
if (is.null(cl)) {
parallel <- "no"
warning("no cluster in ClusterOption, parallel set to no")
}
}
res <- boot(z, statistic=EBI_boot, R=nsim,
sim="permutation", listw=listw, nn=m, S0=S0,
zero.policy=zero.policy,
subtract_mean_in_numerator=subtract_mean_in_numerator,
parallel=parallel, ncpus=ncpus, cl=cl)
return(res)
}
res <- numeric(length = nsim + 1)
for (i in 1:nsim) res[i] <- EBImoran(sample(z), listw, m,
S0, zero.policy, subtract_mean_in_numerator=subtract_mean_in_numerator)
res[nsim + 1] <- EBImoran(z, listw, m, S0, zero.policy,
subtract_mean_in_numerator=subtract_mean_in_numerator)
rankres <- rank(res)
zrank <- rankres[length(res)]
diff <- nsim - zrank
diff <- ifelse(diff > 0, diff, 0)
if (alternative == "less")
pval <- punif((diff + 1)/(nsim + 1), lower.tail=FALSE)
else if (alternative == "greater")
pval <- punif((diff + 1)/(nsim + 1))
if (!is.finite(pval) || pval < 0 || pval > 1)
warning("Out-of-range p-value: reconsider test arguments")
statistic <- res[nsim + 1]
names(statistic) <- "statistic"
parameter <- zrank
names(parameter) <- "observed rank"
method <- "Monte-Carlo simulation of Empirical Bayes Index"
if (subtract_mean_in_numerator) method <- paste(method, "(mean subtracted)")
data.name <- paste("cases: ", deparse(substitute(n)),
", risk population: ", deparse(substitute(x)), "\nweights: ",
deparse(substitute(listw)), "\nnumber of simulations + 1: ",
nsim + 1, "\n", sep = "")
lres <- list(statistic = statistic, parameter = parameter,
p.value = pval, alternative = alternative, method = method,
data.name = data.name, res = res, z = z)
class(lres) <- c("htest", "mc.sim")
lres
}
probmap <- function(n, x, row.names=NULL, alternative="less") {
alternative <- match.arg(alternative, c("greater", "less"))
if (!is.numeric(x))
stop(paste(deparse(substitute(x)), "is not a numeric vector"))
if (!is.numeric(n))
stop(paste(deparse(substitute(n)), "is not a numeric vector"))
if (any(is.na(x)))
stop("NA in at risk population")
if (any(is.na(n)))
stop("NA in cases")
if (any(x < 0))
stop("negative risk population")
if (any(n < 0))
stop("negative number of cases")
p <- n/x
nsum <- sum(n)
xsum <- sum(x)
b <- nsum/xsum
expCount <- x*b
relRisk <- 100*(n/expCount)
# pmap <- ppois(n, expCount, lower.tail=(alternative=="less"))
if (alternative == "less") {
pmap <- ppois(n, expCount)
} else {
pmap <- 1 - ppois(n-1, expCount)
}
if (is.null(row.names))
res <- data.frame(raw=p, expCount=expCount, relRisk=relRisk,
pmap=pmap)
else
res <- data.frame(raw=p, expCount=expCount, relRisk=relRisk,
pmap=pmap, row.names=row.names)
res
}
EBest <- function(n, x, family="poisson") {
if (!is.numeric(x))
stop(paste(deparse(substitute(x)), "is not a numeric vector"))
if (!is.numeric(n))
stop(paste(deparse(substitute(n)), "is not a numeric vector"))
if (any(is.na(x)))
stop("NA in at risk population")
if (any(is.na(n)))
stop("NA in cases")
if (any(x < .Machine$double.eps))
stop("non-positive risk population")
if (any(n < 0))
stop("negative number of cases")
if (length(x) != length(n)) stop("vectors of different length")
m <- length(n)
p <- n/x
nsum <- sum(n)
xsum <- sum(x)
b <- nsum/xsum
s2 <- sum(x * (((p - b)^2)/xsum))
if (family == "poisson") {
a <- s2 - (b/(xsum/m))
if (a < 0) a <- 0
est <- b + (a*(p - b)) / (a + (b/x))
res <- data.frame(raw=p, estmm=est)
attr(res, "family") <- family
attr(res, "parameters") <- list(a=a, b=b)
} else if (family == "binomial") {
# contributed by Olaf Berke
rho <- (x*s2 - (x/mean(x))*(b*(1-b))) /
((x-1)*s2 + ((mean(x)-x) /mean(x))*(b*(1-b)))
est <- rho*p + (1-rho)*b
res <- data.frame(raw = p, estmm = est)
attr(res, "family") <- family
attr(res, "parameters") <- list(a=s2, b=b)
} else stop("family unknown")
res
}
#EBestB <- function (n,x)
#{
#p <- n/x
#b <- sum(n)/sum(x)
# nsum <- sum(n)
# xsum <- sum(x)
# b <- nsum/xsum
#s2 <- sum(x*(p-b)^2) / xsum
#roh <- (x*s2 - (x/mean(x))*(b*(1-b))) /
# ((x-1)*s2 + ((mean(x)-x) /mean(x))*(b*(1-b)))
#est <- roh*p + (1-roh)*b
#result <- data.frame(raw = p, ebest = est)
#attr(result, "parameters") <- list(a = b, b = s2)
#result
#}
EBlocal <- function(ri, ni, nb, zero.policy = NULL,
spChk = NULL, geoda = FALSE) {
if (is.null(zero.policy))
zero.policy <- get("zeroPolicy", envir = .spdepOptions)
stopifnot(is.logical(zero.policy))
# class to inherits Jari Oksanen 080603
if (!inherits(nb, "nb"))
stop(paste(deparse(substitute(nb)), "is not an nb object"))
lnb <- length(nb)
if (lnb < 1) stop("zero length neighbour list")
if (lnb != length(ri))
stop("objects of different length")
if (lnb != length(ni))
stop("objects of different length")
if (is.null(spChk))
spChk <- get.spChkOption()
if (spChk && !chkIDs(ni, nb))
stop("Check of data and neighbour ID integrity failed")
if (spChk && !chkIDs(ri, nb))
stop("Check of data and neighbour ID integrity failed")
if (!is.numeric(ni))
stop(paste(deparse(substitute(ni)), "is not a numeric vector"))
if (!is.numeric(ri))
stop(paste(deparse(substitute(ri)), "is not a numeric vector"))
if (any(is.na(ni)))
stop("NA in at risk population")
if (any(ni == 0))
stop("zero in at risk population")
if (any(is.na(ri)))
stop("NA in cases")
if (any(ni < 0))
stop("negative risk population")
if (any(ri < 0))
stop("negative number of cases")
lw <- nb2listw(include.self(nb), style="B", zero.policy=zero.policy)
xi <- ri/ni
r.i <- lag.listw(lw, ri, zero.policy = zero.policy)
n.i <- lag.listw(lw, ni, zero.policy = zero.policy)
nbar.i <- lag.listw(nb2listw(include.self(nb), style="W",
zero.policy=zero.policy), ni, zero.policy = zero.policy)
m.i <- r.i/n.i
if (geoda) {
work <- vector(mode="list", length=lnb)
cnb <- card(lw$neighbours)
for (i in 1:lnb) {
work[[i]] <- rep(m.i[i], cnb[i])
work[[i]] <- xi[lw$neighbours[[i]]] - work[[i]]
work[[i]] <- work[[i]]^2
work[[i]] <- ni[lw$neighbours[[i]]] * work[[i]]
}
C.i <- sapply(work, sum)
} else {
C.i <- lag.listw(lw, (ni * (xi - m.i)^2), zero.policy = zero.policy)
}
a.i <- (C.i/n.i) - (m.i/nbar.i)
a.i[a.i < 0] <- 0
est <- m.i + (xi - m.i) * (a.i / (a.i + (m.i/ni)))
res <- data.frame(raw=xi, est=est)
attr(res, "parameters") <- list(a=a.i, m=m.i)
res
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.