Nothing
info.gpd <-
# Compute the observed information matrix from a gpd object.
# The expressions are given in Appendix A of Davison & Smith 1990.
# Note we are using a simpler parameterisation in which phi = log(sigma)
# and xi are both linear in their covariates. Xi is -k used in Davison and Smith.
# If penalization is used, the calculation accounts for this, but the resulting
# estimates of variance will be too low and bias might dominate MSE
function(o, method="observed"){
if (class(o) != "gpd"){ stop("object must be of class 'gpd'") }
if (method != "observed"){ stop("only 'observed' information is implemented") }
x <- o$X.phi; z <- o$X.xi
ns <- ncol(x); nk <- ncol(z)
phi <- coef(o)[1:ns]
xi <- coef(o)[(ns+1):(ns + nk)]
phi.i <- colSums(phi * t(x))
xi.i <- colSums(xi * t(z))
w.i <- (o$y - o$threshold) / exp(phi.i)
# Second derivatives of penalties
p <- matrix(0, nrow=ns+nk, ncol=ns+nk)
if (o$penalty %in% c("gaussian", "quadratic")){ # note if Lasso penalty used then 2nd deriv is zero hence no term for this
Si <- solve(o$priorParameters[[2]])
for (i in 1:(ns+nk)){
for (j in 1:(ns + nk)){
p[i,j] <- 2*Si[i,j]
}
}
}
# Second and mixed derivatives of log-lik wrt coefficients of linear predictors
d2li.dphi2 <- -(1 + 1/xi.i) * xi.i * w.i / (1 + xi.i*w.i)^2
d2li.dphidxi <- 1/xi.i^2 * (1/(1 + xi.i*w.i) - 1) + (1+1/xi.i)*w.i/(1 + xi.i*w.i)^2
d2li.dxi2 <- -2/xi.i^3 * log(1 + xi.i*w.i) + 2*w.i/(xi.i^2 * (1 + xi.i*w.i)) + (1 + 1/xi.i)*w.i^2/(1 + xi.i*w.i)^2
# Matrix has 4 blocks, 2 of which are transposes of each other. Need block for phi parameters,
# block for xi parameters and block for the cross of them.
Ip <- matrix(0, ncol=ns, nrow=ns)
for (u in 1:ns){
for (v in 1:ns){
Ip[u,v] <- -sum(x[,u] * x[,v] * d2li.dphi2)
}
}
Ix <- matrix(0, ncol=nk, nrow=nk)
for (s in 1:nk){
for (t in 1:nk){
Ix[s,t] <- -sum(z[,s] * z[,t] * d2li.dxi2)
}
}
Ipx <- matrix(0, ncol=nk, nrow=ns)
for (u in 1:ns){
for (s in 1:nk){
Ipx[u,s] <- -sum(z[,s] * x[,u] * d2li.dphidxi )
}
}
i <- rbind( cbind(Ip, Ipx), cbind(t(Ipx), Ix))
# return observed Information matrix. Note that an estimate of the covariance matrix is given by the inverse of this matrix.
i - p
}
test.info.gpd <- function(){
lmod <- gpd(ALT.M, data=liver, qu=.5, xi=~I(240*as.numeric(dose)), cov="numeric")
checkTrue(all(sqrt(diag(solve(info.gpd(lmod)))) > 0), msg="info.gpd: SDs positive")
# Check equality to numerical approximation in big samples
set.seed(20110923)
tol <- 10^(-3)
for (i in 1:10){
x <- rt(10000, 10)
junk <- gpd(x, qu=.9, penalty="none", cov="numeric")
msg <- paste("info.gpd: t", i, "equality to numerical", sep="")
checkEqualsNumeric(junk$cov, solve(info.gpd(junk)), tolerance=tol, msg=msg)
# check estimation when we have a penalty
gp1 <- list(c(0, 0), diag(c(10^4, .05)))
gp2 <- list(c(0, 0), diag(c(.1, 10^4)))
junk1 <- gpd(x, qu=.9, priorParameters = gp1, cov="numeric")
junk2 <- gpd(x, qu=.9, priorParameters = gp2, cov="numeric")
msg1 <- paste("info.gpd: t", i, "equality to numerical, penalty on xi", sep="")
msg2 <- paste("info.gpd: t", i, "equality to numerical, penalty on phi", sep="")
tol <- 0.01
checkEqualsNumeric(junk1$cov, solve(info.gpd(junk1)), tolerance=tol, msg=msg1)
checkEqualsNumeric(junk2$cov, solve(info.gpd(junk2)), tolerance=tol, msg=msg2)
# check estimation when we have covariates
n <- 10000
x <- 1/runif(n)
data <- data.frame(x=x,y=rexp(n,exp(2 + x)))
junk3 <- gpd(y,data=data,phi =~ x,th=0)
msg3 <- paste("info.gpd: t",i,"equality to numerical, covariates in phi",sep="")
checkEqualsNumeric(junk3$cov, solve(info.gpd(junk3)), tolerance=tol, msg=msg3)
x <- runif(n,-0.5,0.5)
data <- data.frame(x=x,y = rgpd(n,sigma = exp(3+2*x), xi=x))
junk4 <- gpd(y,data=data,phi=~x, xi = ~ x,th=0)
msg4 <- paste("info.gpd: t",i,"equality to numerical, covariates in phi and xi",sep="")
checkEqualsNumeric(junk4$cov, solve(info.gpd(junk4)), tolerance=tol, msg=msg4)
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.