Nothing
hiersimu.default <-
function(y, x, FUN, location = c("mean", "median"),
relative = FALSE, drop.highest = FALSE, nsimul=99, ...)
{
## evaluate formula
lhs <- as.matrix(y)
if (missing(x))
x <- cbind(level_1=seq_len(nrow(lhs)),
leve_2=rep(1, nrow(lhs)))
rhs <- data.frame(x)
rhs[] <- lapply(rhs, as.factor)
rhs[] <- lapply(rhs, droplevels)
nlevs <- ncol(rhs)
if (is.null(colnames(rhs)))
colnames(rhs) <- paste("level", 1:nlevs, sep="_")
tlab <- colnames(rhs)
## check proper design of the model frame
l1 <- sapply(rhs, function(z) length(unique(z)))
if (!any(sapply(2:nlevs, function(z) l1[z] <= l1[z-1])))
stop("number of levels are inappropriate, check sequence")
rval <- list()
rval[[1]] <- rhs[,nlevs]
nCol <- nlevs - 1
if (nlevs > 1) {
nCol <- nlevs - 1
for (i in 2:nlevs) {
rval[[i]] <- interaction(rhs[,nCol], rval[[(i-1)]], drop=TRUE)
nCol <- nCol - 1
}
}
rval <- as.data.frame(rval[rev(1:length(rval))])
l2 <- sapply(rval, function(z) length(unique(z)))
if (any(l1 != l2))
stop("levels are not perfectly nested")
## aggregate response matrix
fullgamma <-if (nlevels(rhs[,nlevs]) == 1)
TRUE else FALSE
if (fullgamma && drop.highest)
nlevs <- nlevs - 1
if (nlevs == 1 && relative)
stop("'relative=FALSE' makes no sense with 1 level")
ftmp <- vector("list", nlevs)
for (i in 1:nlevs) {
ftmp[[i]] <- as.formula(paste("~", tlab[i], "- 1"))
}
## is there a method/burnin/thin in ... ?
method <- if (is.null(list(...)$method))
"r2dtable" else list(...)$method
burnin <- if (is.null(list(...)$burnin))
0 else list(...)$burnin
thin <- if (is.null(list(...)$thin))
1 else list(...)$thin
## evaluate other arguments
if (!is.function(FUN))
stop("'FUN' must be a function")
location <- match.arg(location)
aggrFUN <- switch(location,
"mean" = mean,
"median" = median)
## this is the function passed to oecosimu
evalFUN <- function(x) {
if (fullgamma && !drop.highest) {
tmp <- lapply(1:(nlevs-1), function(i) t(model.matrix(ftmp[[i]], rhs)) %*% x)
tmp[[nlevs]] <- matrix(colSums(x), nrow = 1, ncol = ncol(x))
} else {
tmp <- lapply(1:nlevs, function(i) t(model.matrix(ftmp[[i]], rhs)) %*% x)
}
a <- sapply(1:nlevs, function(i) aggrFUN(FUN(tmp[[i]]))) # dots removed from FUN
if (relative)
a <- a / a[length(a)]
a
}
## processing oecosimu results
sim <- oecosimu(lhs, evalFUN, method = method, nsimul=nsimul,
burnin=burnin, thin=thin)
# nam <- paste("level", 1:nlevs, sep=".")
# names(sim$statistic) <- attr(sim$oecosimu$statistic, "names") <- nam
names(sim$statistic) <- attr(sim$oecosimu$statistic, "names") <- tlab[1:nlevs]
call <- match.call()
call[[1]] <- as.name("hiersimu")
attr(sim, "call") <- call
attr(sim, "FUN") <- FUN
attr(sim, "location") <- location
attr(sim, "n.levels") <- nlevs
attr(sim, "terms") <- tlab
attr(sim, "model") <- rhs
class(sim) <- c("hiersimu", class(sim))
sim
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.