Nothing
`multipart.default` <-
function(y, x, index=c("renyi", "tsallis"), scales = 1,
global = FALSE, relative = FALSE, nsimul=99, ...)
{
if (length(scales) > 1)
stop("length of 'scales' must be 1")
## evaluate formula
lhs <- as.matrix(y)
if (missing(x))
x <- cbind(level_1=seq_len(nrow(lhs)),
leve_2=rep(1, nrow(lhs)))
rhs <- data.frame(x)
rhs[] <- lapply(rhs, as.factor)
rhs[] <- lapply(rhs, droplevels)
nlevs <- ncol(rhs)
if (nlevs < 2)
stop("provide at least two level hierarchy")
if (any(rowSums(lhs) == 0))
stop("data matrix contains empty rows")
if (any(lhs < 0))
stop("data matrix contains negative entries")
if (is.null(colnames(rhs)))
colnames(rhs) <- paste("level", seq_len(nlevs), sep="_")
tlab <- colnames(rhs)
## check proper design of the model frame
l1 <- sapply(rhs, function(z) length(unique(z)))
if (!any(sapply(2:nlevs, function(z) l1[z] <= l1[z-1])))
stop("number of levels are inappropriate, check sequence")
rval <- list()
rval[[1]] <- rhs[,nlevs]
nCol <- nlevs - 1
for (i in 2:nlevs) {
rval[[i]] <- interaction(rhs[,nCol], rval[[(i-1)]], drop=TRUE)
nCol <- nCol - 1
}
rval <- as.data.frame(rval[rev(seq_along(rval))])
l2 <- sapply(rval, function(z) length(unique(z)))
if (any(l1 != l2))
stop("levels are not perfectly nested")
## aggregate response matrix
fullgamma <-if (nlevels(rhs[,nlevs]) == 1)
TRUE else FALSE
# if (!fullgamma && !global)
# warning("gamma diversity value might be meaningless")
ftmp <- vector("list", nlevs)
for (i in seq_len(nlevs)) {
ftmp[[i]] <- as.formula(paste("~", tlab[i], "- 1"))
}
## is there a method/burnin/thin in ... ?
method <- if (is.null(list(...)$method))
"r2dtable" else list(...)$method
burnin <- if (is.null(list(...)$burnin))
0 else list(...)$burnin
thin <- if (is.null(list(...)$thin))
1 else list(...)$thin
## evaluate other arguments
index <- match.arg(index)
divfun <- switch(index,
"renyi" = function(x) renyi(x, scales=scales, hill = TRUE),
"tsallis" = function(x) tsallis(x, scales=scales, hill = TRUE))
## cluster membership determination
nrhs <- rhs
nrhs <- sapply(nrhs, as.numeric)
idcl <- function(i) {
h <- nrhs[,i]
l <- nrhs[,(i-1)]
sapply(unique(l), function(i) h[l==i][1])
}
id <- lapply(2:nlevs, idcl)
## this is the function passed to oecosimu
if (global) {
wdivfun <- function(x) {
if (fullgamma) {
tmp <- lapply(seq_len(nlevs - 1),
function(i) t(model.matrix(ftmp[[i]], rhs)) %*% x)
tmp[[nlevs]] <- matrix(colSums(x), nrow = 1, ncol = ncol(x))
} else {
tmp <- lapply(seq_len(nlevs),
function(i) t(model.matrix(ftmp[[i]], rhs)) %*% x)
}
raw <- sapply(seq_len(nlevs), function(i) divfun(tmp[[i]]))
a <- sapply(raw, mean)
G <- a[nlevs]
b <- sapply(seq_len(nlevs - 1), function(i) G / a[i])
if (relative)
b <- b / sapply(raw[seq_len(nlevs - 1)], length)
c(a, b)
}
} else {
wdivfun <- function(x) {
if (fullgamma) {
tmp <- lapply(seq_len(nlevs-1), function(i) t(model.matrix(ftmp[[i]], rhs)) %*% x)
tmp[[nlevs]] <- matrix(colSums(x), nrow = 1, ncol = ncol(x))
} else {
tmp <- lapply(seq_len(nlevs), function(i) t(model.matrix(ftmp[[i]], rhs)) %*% x)
}
a <- sapply(seq_len(nlevs), function(i) divfun(tmp[[i]]))
am <- lapply(seq_len(nlevs - 1), function(i) {
sapply(seq_along(unique(id[[i]])), function(ii) {
mean(a[[i]][id[[i]]==ii])
})
})
b <- lapply(seq_len(nlevs - 1), function(i) a[[(i+1)]] / am[[i]])
bmax <- lapply(id, function(i) table(i))
if (relative)
b <- lapply(seq_len(nlevs - 1), function(i) b[[i]] / bmax[[i]])
c(sapply(a, mean), sapply(b, mean))
}
}
if (nsimul > 0) {
sim <- oecosimu(lhs, wdivfun, method = method, nsimul=nsimul,
burnin=burnin, thin=thin)
} else {
sim <- wdivfun(lhs)
tmp <- rep(NA, length(sim))
sim <- list(statistic = sim,
oecosimu = list(z = tmp, pval = tmp, method = NA, statistic = sim))
}
nam <- c(paste("alpha", seq_len(nlevs - 1), sep="."), "gamma",
paste("beta", seq_len(nlevs - 1), sep="."))
names(sim$statistic) <- attr(sim$oecosimu$statistic, "names") <- nam
call <- match.call()
call[[1]] <- as.name("multipart")
attr(sim, "call") <- call
attr(sim$oecosimu$simulated, "index") <- index
attr(sim$oecosimu$simulated, "scales") <- scales
attr(sim$oecosimu$simulated, "global") <- global
attr(sim, "n.levels") <- nlevs
attr(sim, "terms") <- tlab
attr(sim, "model") <- rhs
class(sim) <- c("multipart", class(sim))
sim
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.