R/DEgenes.R

Defines functions DEcomparisonPlot DEbubblePlot doWilcox selectDEgenes .get_cell_subsets_de DEgenesCross DEgenes

Documented in DEbubblePlot DEcomparisonPlot DEgenes DEgenesCross selectDEgenes

#' DEgenes
#'
#' A function to perform DE analysis on CITE seq data
#'
#' @param sce A SingleCellExperiment object
#' @param altExp_name A character indicates which expression matrix is used.
#' by default is none (i.e. RNA).
#' @param exprs_value A character indicates which expression value
#' in assayNames is used.
#' @param group A vector indicates the grouping of the data
#' @param method A character indicates the method used in DE analysis
#' @param exprs_pct A numeric indicates the threshold expression percentage
#' of a gene to be considered in DE analysis
#' @param exprs_threshold A numeric indicates the threshold of expression.
#' By default is 0.
#' @param return_all Whether return full list of DE genes
#' @param pval_adj A numeric indicates the threshold of adjusted p-value.
#' @param mean_diff A numeric indicates the threshold of
#' difference of average expression.
#' @param pct_diff A numeric indicates the threshold of
#' difference of percentage expression.
#' @param topN A numeric indicates the top number of genes
#' will be included in the list.
#'
#' @return A SingleCellExeperiment with DE results stored in meta data DE_res
#'
#' @examples
#' data(sce_control_subset)
#' sce_control_subset <- DEgenes(sce_control_subset,
#' group = sce_control_subset$SNF_W_louvain,
#' return_all = TRUE,
#' exprs_pct = 0.5)
#'
#' sce_control_subset <- selectDEgenes(sce_control_subset)
#'
#' @importFrom randomForest randomForest
#' @importFrom SingleCellExperiment altExp altExpNames
#' @importFrom SummarizedExperiment assayNames assay
#' @importFrom S4Vectors metadata
#'
#' @export
#'

DEgenes <- function(sce,
                    altExp_name = "none",
                    exprs_value = "logcounts",
                    group = NULL,
                    method = "wilcox",
                    exprs_pct = 0.1,
                    exprs_threshold = 0,
                    return_all = FALSE,
                    pval_adj = 0.05,
                    mean_diff = 0,
                    pct_diff = 0.1,
                    topN = 10) {
    method <- match.arg(method, c("wilcox"))

    if (is.null(group)) {
        stop("group is NULL.")
    }

    if (!altExp_name %in% c("none", "RNA")) {
        if (!altExp_name %in% altExpNames(sce)) {
            stop("sce does not contain altExp_name as altExpNames")
        }

        if (!exprs_value %in% assayNames(altExp(sce, altExp_name))) {
            stop("sce does not contain exprs_value as assayNames for altExp")
        }

        exprsMat <- assay(altExp(sce, altExp_name), exprs_value)

    } else {
        # if altExp_name is "none", then the assay in SingleCellExperiment
        #is extracted (RNA in most of the cases)

        exprsMat <- SummarizedExperiment::assay(sce, exprs_value)
    }

    if (method == "wilcox") {
        de_res <- doWilcox(
            exprsMat,
            cellTypes = group,
            exprs_pct = exprs_pct,
            exprs_threshold = exprs_threshold
        )
    }

    meta_name <- paste("DE_res",
                       ifelse(altExp_name == "none", "RNA", altExp_name),
                       sep = "_")

    S4Vectors::metadata(sce)[[meta_name]] <- de_res

    if (return_all) {
        return(sce)
    } else {
        sce <- selectDEgenes(
            sce,
            altExp_name = altExp_name,
            pval_adj = pval_adj,
            mean_diff = mean_diff,
            pct_diff = pct_diff,
            topN = topN
        )
        return(sce)
    }
}


#' DEgenesCross
#'
#' A function to perform DE analysis on a list of CITE seq data
#'
#' @param sce_list A Slist of ingleCellExperiment object
#' @param altExp_name A character indicates which expression matrix is
#' used. by default is none (i.e. RNA).
#' @param exprs_value A character indicates which expression value in
#' assayNames is used.
#' @param method A character indicates the method used in DE analysis
#' @param colData_name A vector of character indicates the colData that
#' stored the group information of each sce of the sce_list
#' @param group_to_test A vector of character indicates which group in each
#' sce is used to compared across the sce list.
#' @param exprs_pct A numeric indicates the threshold expression percentage
#' of a gene to be considered in DE analysis
#' @param exprs_threshold A numeric indicates the threshold of expression.
#' By default is 0.
#' @param return_all Whether return full list of DE genes
#' @param pval_adj A numeric indicates the threshold of adjusted p-value.
#' @param mean_diff A numeric indicates the threshold of difference of
#' average expression.
#' @param pct_diff A numeric indicates the threshold of difference of
#' percentage expression.
#' @param topN A numeric indicates the top number of genes will be
#' included in the list.
#'
#' @return A SingleCellExeperiment with DE results stored in meta data DE_res
#'
#'
#' @importFrom randomForest randomForest
#' @importFrom SingleCellExperiment altExp altExpNames
#' @importFrom SummarizedExperiment assayNames assay
#' @importFrom S4Vectors metadata
#'
#' @examples
#'
#' data("sce_control_subset", package = "CiteFuse")
#' data("sce_ctcl_subset", package = "CiteFuse")
#'
#' de_res <- DEgenesCross(sce_list = list(control = sce_control_subset,
#' ctcl = sce_ctcl_subset),
#' colData_name = c("SNF_W_louvain", "SNF_W_louvain"),
#' group_to_test = c("2", "6"))
#'
#' @export
#'

DEgenesCross <- function(sce_list,
                         altExp_name = "none",
                         exprs_value = "logcounts",
                         method = "wilcox",
                         colData_name = NULL,
                         group_to_test = NULL,
                         exprs_pct = 0.1,
                         exprs_threshold = 0,
                         return_all = FALSE,
                         pval_adj = 0.05,
                         mean_diff = 0,
                         pct_diff = 0.1,
                         topN = 10) {
    method <- match.arg(method, c("wilcox"))




    exprsMatList <- lapply(seq_len(length(sce_list)), function(i) {
        cell_subset <- .get_cell_subsets_de(sce_list[[i]],
                                            group_to_test[i],
                                            colData_name[i])

        if (length(cell_subset) == 0) {
            stop("There is no cells with name of group_to_test in colData_name")
        } else {
            exprs <- .extract_exprsMat(sce_list[[i]],
                                       cell_subset,
                                       altExp_name, exprs_value)
        }
        exprs
    })

    common_genes <- Reduce(intersect, lapply(exprsMatList, rownames))

    exprsMat <- do.call(cbind, lapply(exprsMatList, function(x) {
        x[common_genes,]
    }))

    dataset_name <- names(sce_list)

    if (is.null(dataset_name)) {
        dataset_name <- paste("dataset", seq_len(sce_list), sep = "_")
    }



    group <- rep(dataset_name, unlist(lapply(exprsMatList, ncol)))


    if (method == "wilcox") {
        de_res <- doWilcox(
            exprsMat,
            cellTypes = group,
            exprs_pct = exprs_pct,
            exprs_threshold = exprs_threshold
        )
    }

    return(de_res)
}

#' @importFrom SummarizedExperiment colData

.get_cell_subsets_de <- function(sce, group_to_test, colData_name) {
    if (is.null(colData_name)) {
        cell_subset <- colnames(sce)
    } else {
        if (!colData_name %in% colnames(colData(sce))) {
            stop("colData name is not in sce's colData")
        } else {
            this_col_data <- colData(sce)[, colData_name]
        }

        cell_subset <- colnames(sce)[this_col_data %in%  group_to_test]
    }
    return(cell_subset)

}


#' selectDEgenes
#'
#' A function to select DE genes
#'
#' @param sce A SingleCellExperiment object with DE results stored
#' in meta data DE_res list.
#' @param de_res DE_res returned by DEgenesCross().
#' @param altExp_name A character indicates which expression
#' matrix is used. by default is none (i.e. RNA).
#' @param pval_adj A numeric indicates the threshold of adjusted p-value.
#' @param mean_diff A numeric indicates the threshold of
#' difference of average expression.
#' @param pct_diff A numeric indicates the threshold of
#' difference of percentage expression.
#' @param topN A numeric indicates the top number of genes
#' will be included in the list.
#'
#' @return A SingleCellExperiment With filtered DE results in
#' DE_res_filter list of metadata
#'
#' @examples
#' data(sce_control_subset)
#' sce_control_subset <- DEgenes(sce_control_subset,
#' group = sce_control_subset$SNF_W_louvain,
#' return_all = TRUE,
#' exprs_pct = 0.5)
#'
#' sce_control_subset <- selectDEgenes(sce_control_subset)
#'
#' @export

selectDEgenes <- function(sce = NULL,
                          de_res = NULL,
                          altExp_name = "none",
                          pval_adj = 0.05,
                          mean_diff = 0,
                          pct_diff = 0.1,
                          topN = 10) {
    if (is.null(de_res) & is.null(sce)) {
        stop("Both de_res and sce is null")
    }

    if (is.null(de_res) & !is.null(sce)) {
        meta_name <- paste("DE_res",
                           ifelse(altExp_name == "none", "RNA", altExp_name),
                           sep = "_")


        if (!meta_name %in% names(S4Vectors::metadata(sce))) {
            stop(
                "There is no DE_res in the sce object.
         Please run DEgenes() with the same altExp_name first."
            )
        }

        de_res <- S4Vectors::metadata(sce)[[meta_name]]
    }


    de_res_filter <- lapply(de_res, function(x) {
        subset <- x[x$meanDiff > mean_diff &
                        x$p.adjust < pval_adj & x$pctDiff > pct_diff,]
        subset <- subset[seq_len(min(nrow(subset), topN)), ]
        subset
    })

    if (!is.null(sce)) {
        S4Vectors::metadata(sce)[[paste(meta_name, "filter",
                                        sep = "_")]] <- de_res_filter

        return(sce)
    } else {
        return(de_res_filter)
    }
}




doWilcox <- function(exprsMat,
                     cellTypes,
                     exprs_pct = 0.05,
                     exprs_threshold = 0) {
    cellTypes <- droplevels(as.factor(cellTypes))
    tt <- list()

    for (i in seq_len(nlevels(cellTypes))) {
        tmp_celltype <- (ifelse(cellTypes == levels(cellTypes)[i], 1, 0))


        meanExprs <- do.call(cbind, lapply(c(0, 1), function(i) {
            rowMeans(exprsMat[, tmp_celltype == i])
        }))

        meanPct <- do.call(cbind, lapply(c(0, 1), function(i) {
            rowSums(exprsMat[, tmp_celltype == i] >
                        exprs_threshold) / sum(tmp_celltype == i)
        }))

        meandiff <- meanExprs[, 2] - meanExprs[, 1]

        keep <- meanPct[, 2] > exprs_pct

        test_res <- apply(exprsMat[keep,], 1, function(x)
            suppressWarnings(stats::wilcox.test(x ~ tmp_celltype)))

        test_res <- lapply(test_res, function(x) {
            stats <- x$statistic
            pval <- x$p.value
            p.adjust <- p.adjust(pval, method = "BH")
            c(stats = stats,
              pval = pval,
              p.adjust = p.adjust)
        })

        # tt[[i]] <- topTable(fit, n = Inf, adjust.method = "BH", coef = 2)
        tt[[i]] <- do.call(rbind, test_res)

        rownames(tt[[i]]) <- rownames(exprsMat[keep,])



        tt[[i]] <- cbind(tt[[i]],
                         meanExprs.1 = meanExprs[rownames(tt[[i]]), 1])
        tt[[i]] <- cbind(tt[[i]],
                         meanExprs.2 = meanExprs[rownames(tt[[i]]), 2])
        tt[[i]] <- cbind(tt[[i]],
                         meanPct.1 = meanPct[rownames(tt[[i]]), 1])
        tt[[i]] <- cbind(tt[[i]],
                         meanPct.2 = meanPct[rownames(tt[[i]]), 2])
        tt[[i]] <- cbind(tt[[i]],
                         meanDiff = meandiff[rownames(tt[[i]])])
        tt[[i]] <- cbind(tt[[i]],
                         pctDiff = meanPct[rownames(tt[[i]]), 2] -
                             meanPct[rownames(tt[[i]]), 1])

        tt[[i]] <- data.frame(tt[[i]])
        tt[[i]] <- tt[[i]][order(ifelse(tt[[i]]$meanDiff > 0, 0, 1),
                                 tt[[i]]$p.adjust), ]
        tt[[i]] <- cbind(tt[[i]], name = rownames(tt[[i]]))
        tt[[i]] <- cbind(tt[[i]], group = levels(cellTypes)[i])
    }

    names(tt) <- levels(cellTypes)


    return(tt)
}



#' DEbubblePlot
#'
#' A function to generate circlepack plot to visualise
#' the marker for each cluster
#'
#' @param de_list A list of results from `DE genes ()`
#'
#' @return A ggplot to visualise the DE results via bubble plot
#'
#' @importFrom ggraph ggraph geom_node_circle geom_node_text geom_node_label
#' @importFrom igraph degree graph_from_data_frame
#'
#' @import ggplot2
#'
#' @examples
#' library(S4Vectors)
#' data(sce_control_subset, package = "CiteFuse")
#' sce_control_subset <- DEgenes(sce_control_subset,
#' altExp_name = "none",
#' group = sce_control_subset$SNF_W_louvain,
#' return_all = TRUE,
#' exprs_pct = 0.5)
#'
#'
#' sce_control_subset <- selectDEgenes(sce_control_subset,
#'                             altExp_name = "none")
#'
#' sce_control_subset <- DEgenes(sce_control_subset,
#' altExp_name = "ADT",
#' group = sce_control_subset$SNF_W_louvain,
#' return_all = TRUE,
#' exprs_pct = 0.5)
#'
#'
#' sce_control_subset <- selectDEgenes(sce_control_subset,
#'                              altExp_name = "ADT")
#'
#' rna_DEgenes <- metadata(sce_control_subset)[["DE_res_RNA_filter"]]
#' adt_DEgenes <- metadata(sce_control_subset)[["DE_res_ADT_filter"]]
#'
#' rna_DEgenes <- lapply(rna_DEgenes, function(x){
#'   x$name <- gsub("hg19_", "", x$name)
#'   x})
#' DEbubblePlot(list(RNA = rna_DEgenes, ADT = adt_DEgenes))
#'
#' @export

DEbubblePlot <- function(de_list) {
    type <- names(de_list)

    df_de <-
        do.call(rbind, lapply(seq_len(length(de_list)), function(i) {
            de_list[[i]] <- do.call(rbind, de_list[[i]])
            de_list[[i]]$type <- names(de_list)[i]
            de_list[[i]]
        }))

    p_value <- df_de$p.adjust
    p_value[p_value == 0] <- min(p_value[p_value > 0])

    data <- data.frame(
        root = rep("root", nrow(df_de)),
        group = paste("group", df_de$group, sep = "_"),
        subgroup = paste(df_de$group, df_de$type, sep = "_"),
        subsubgroup = df_de$name,
        type = df_de$type,
        value = rep(1, nrow(df_de)),
        size = -log10(p_value)
    )
    rownames(data) <-
        paste(data$subgroup, data$subsubgroup, sep = "|")


    edges <-  rbind(
        data.frame(from = data$root, to = data$group),
        data.frame(
            from = data$group,
            to = paste(data$subgroup,
                       data$subsubgroup, sep = "|")
        )
    )

    labels <- unlist(lapply(strsplit(as.character(unique(
        unlist(edges))), "\\|"), function(x) x[length(x)]))

    group <- unlist(lapply(strsplit(as.character(unique(
        unlist(edges) )), "\\|"), function(x) x[1]))

    vertices <- data.frame(name = unique(unlist(edges)),
                           labels = labels,
                           group = group)

    fillColor <-  rep(NA, nrow(vertices))

    for (i in seq_len(length(type))) {
        fillColor[grep(type[i], vertices$group)] <- type[i]
    }

    fillColor[vertices$group == "root"] <- "0"
    fillColor[grep("group", vertices$group)] <- "group"

    vertices$fillColor <- fillColor

    vertices$size <- rep(1, nrow(vertices))
    rownames(vertices) <- vertices$name
    vertices[rownames(data),]$size <- data$size


    vertices$originalGroup <-
        unlist(lapply(strsplit(as.character(vertices$group),
                               "_"), "[[", 1))

    common <- rep(FALSE, nrow(vertices))
    group_list <- unique(vertices$originalGroup)
    group_list <- group_list[!group_list %in% c("root", "group")]

    for (i in seq_len(length(group_list))) {
        tmp <- vertices[vertices$originalGroup == group_list[i],]
        common_features <- Reduce(intersect,
                                  lapply(lapply(unique(tmp$group),
                                                function(x)
                                                    tmp[tmp$group == x,]),
                                         function(x)
                                             x$labels))
        if (length(common_features) != 0) {
            common[vertices$originalGroup ==
                       group_list[i]][tmp$labels %in% common_features] <-
                TRUE
        }

    }


    vertices$common <- vertices$fillColor
    vertices$common <- ifelse(common, "common", vertices$common)
    vertices$fillColor <- factor(vertices$fillColor,
                                 levels = c("root", "group",
                                            type, "common"))

    mygraph <-
        igraph::graph_from_data_frame(edges, vertices = vertices)



    fill_colors <-
        c("white", "grey90", "#91B3D7", "#EA8783", "#ddb5d5")
    names(fill_colors) <- c("root", "group", type, "common")
    text_colors <- c("black", "black", "black", "black", "#D62728")
    names(text_colors) <- c("root", "group", type, "common")

    text_size <- vertices[!grepl("root|group", vertices$group),]$size
    names(text_size) <- rownames(vertices[!grepl("root|group",
                                                 vertices$group),])
    text_size <- text_size / max(text_size) * 3
    text_size <- ifelse(text_size < 1.8, 1.8, text_size)

    g <- ggraph::ggraph(mygraph, layout = 'circlepack',
                        weight = vertices$size) +
        ggraph::geom_node_circle(aes(fill = vertices$fillColor,
                                     color = vertices$common), size = 0.5) +
        # scale_fill_viridis_d() +
        scale_fill_manual(values = fill_colors) +
        scale_color_manual(values = text_colors) +
        theme_void() +
        ggraph::geom_node_text(aes(
            label = labels,
            filter = igraph::degree(mygraph,
                                    mode = "out") == 0
        ),
        size = text_size) +
        ggraph::geom_node_label(
            aes(label = ifelse(
                grepl("group",
                      as.character(vertices$labels)),
                as.character(vertices$labels),
                ""
            )),
            fill = "white",
            repel = TRUE,
            size = 3,
            fontface = "bold"
        ) +
        theme(legend.position = "FALSE", aspect.ratio = 1)


    return(g)
}


#' DEcomparisonPlot
#'
#' A function to visualise the pairwise comparison of pvalue in
#' different data modality.
#'
#' @param de_list A list including two lists results from `DE genes ()`.
#' @param feature_list A list including two lists features indicating
#' the selected subset of features will be visualised
#'
#' @return A ggplot2 to visualise the comparison plot of DE.
#'
#' @examples
#'
#' library(S4Vectors)
#' data(sce_control_subset)
#' sce_control_subset <- DEgenes(sce_control_subset,
#' group = sce_control_subset$SNF_W_louvain,
#' return_all = TRUE,
#' exprs_pct = 0.5)
#'
#' sce_control_subset <- selectDEgenes(sce_control_subset)
#'
#' sce_control_subset <- DEgenes(sce_control_subset,
#'                        altExp_name = "ADT",
#'                        group = sce_control_subset$SNF_W_louvain,
#'                        return_all = TRUE,
#'                        exprs_pct = 0.5)
#'
#'
#' sce_control_subset <- selectDEgenes(sce_control_subset,
#'                              altExp_name = "ADT")
#' rna_list <- c("hg19_CD4",
#' "hg19_CD8A",
#' "hg19_HLA-DRB1",
#' "hg19_ITGAX",
#' "hg19_NCAM1",
#' "hg19_CD27",
#' "hg19_CD19")
#'
#' adt_list <- c("CD4", "CD8", "MHCII (HLA-DR)", "CD11c", "CD56", "CD27", "CD19")
#'
#' rna_DEgenes_all <- S4Vectors::metadata(sce_control_subset)[["DE_res_RNA"]]
#' adt_DEgenes_all <- S4Vectors::metadata(sce_control_subset)[["DE_res_ADT"]]
#'
#' feature_list <- list(RNA = rna_list, ADT = adt_list)
#' de_list <- list(RNA = rna_DEgenes_all, ADT = adt_DEgenes_all)
#'
#' DEcomparisonPlot(de_list = de_list,
#'                  feature_list = feature_list)
#'
#' @import ggplot2
#'
#' @export


DEcomparisonPlot <- function(de_list, feature_list) {
    if (length(de_list) != 2 | length(feature_list)  != 2) {
        stop("The length of de_list and feature_list not equal to 2")
    }


    de_pvalue_list <- list()

    for (i in seq_len(length(de_list))) {
        de_pvalue_list[[i]]  <- lapply(de_list[[i]], function(x) {
            p <- x[feature_list[[i]],]$p.adjust
            p[is.na(p)] <- 1
            names(p) <- feature_list[[i]]
            p
        })
    }

    df <- lapply(seq_len(length(de_pvalue_list[[1]])), function(i) {
        df <- data.frame(log10(de_pvalue_list[[1]][[i]]),
                         -log10(de_pvalue_list[[2]][[i]]))
        df <- cbind(df, do.call(cbind, feature_list))
        colnames(df) <- c(names(de_list),
                          paste(names(de_list), "name", sep = "_"))


        df <- df[rowSums(df[, seq_len(2)]) != 0,]

        df <- df[order(abs(df[, 2] - df[, 1]), decreasing = TRUE),]

        df$group <- paste("Group", names(de_pvalue_list[[1]])[i])
        df
    })

    df <- do.call(rbind, df)

    g <- ggplot(data = df, aes(group = df$group)) +
        geom_segment(data = df, aes(
            x = 0,
            xend = df[, 1],
            y = seq_len(length(df[, 3])),
            yend = seq_len(length(df[, 3]))
        )) +
        geom_segment(data = df, aes(
            x = 0,
            xend = df[, 2],
            y = seq_len(length(df[, 3])),
            yend = seq_len(length(df[, 3]))
        )) +
        geom_point(
            data = df,
            aes(x = 0, y = seq_len(length(df[, 3]))),
            color = "black",
            shape = 124,
            size = 10
        ) +
        geom_point(
            data = df,
            aes(x = df[, 1], y = seq_len(length(df[, 3]))),
            color = "red",
            size = 2
        ) +
        geom_point(
            data = df,
            aes(x = df[, 2], y = seq_len(length(df[, 3]))),
            color = "blue",
            size = 2
        ) +
        scale_y_continuous(
            breaks = seq_len(length(df[, 3])),
            labels = c(as.character(df[, 3])),
            sec.axis = sec_axis(
                ~ .,
                breaks = seq_len(length(df[, 3])),
                labels = c(as.character(df[, 4]))
            )
        ) +
        facet_grid(group ~ .,
                   scales = "free_y",
                   space = "free_y",
                   switch = "both") +
        ylab("") +
        xlab("log10(p.adjust)                             -log10(p.adjust)") +
        theme_bw() +
        theme(strip.placement = "outside",
              strip.text = element_text(size = 5)) +
        NULL
    return(g)

}

Try the CiteFuse package in your browser

Any scripts or data that you put into this service are public.

CiteFuse documentation built on April 14, 2021, 6 p.m.