MetaClustering: MetaClustering

Description Usage Arguments Value See Also Examples

Description

Cluster data with automatic number of cluster determination for several algorithms

Usage

1
MetaClustering(data, method, max = 20, nClus = NULL, ...)

Arguments

data

Matrix containing the data to cluster

method

Clustering method to use, given as a string. Options are metaClustering_consensus,metaClustering_hclust, metaClustering_kmeans,metaClustering_som

max

Maximum number of clusters to try out

nClus

Exact number of clusters to use. If not NULL, max will be ignored.

...

Extra parameters to pass along

Value

Numeric array indicating cluster for each datapoint

See Also

metaClustering_consensus

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
   # Read from file, build self-organizing map and minimal spanning tree
   fileName <- system.file("extdata","lymphocytes.fcs",package="FlowSOM")
   flowSOM.res <- ReadInput(fileName, compensate=TRUE,transform=TRUE,
                            scale=TRUE)
   flowSOM.res <- BuildSOM(flowSOM.res,colsToUse=c(9,12,14:18))
   flowSOM.res <- BuildMST(flowSOM.res)
   
   # Apply metaclustering
   metacl <- MetaClustering(flowSOM.res$map$codes,
                            "metaClustering_consensus",
                            max=10)
   
   # Get metaclustering per cell
   flowSOM.clustering <- metacl[flowSOM.res$map$mapping[,1]]    


Search within the FlowSOM package
Search all R packages, documentation and source code

Questions? Problems? Suggestions? or email at ian@mutexlabs.com.

Please suggest features or report bugs with the GitHub issue tracker.

All documentation is copyright its authors; we didn't write any of that.