Description Usage Arguments Value See Also Examples
View source: R/4_metaClustering.R
Cluster data with automatic number of cluster determination for several algorithms
1 | MetaClustering(data, method, max = 20, ...)
|
data |
Matrix containing the data to cluster |
method |
Clustering method to use |
max |
Maximum number of clusters to try out |
... |
Extra parameters to pass along |
Numeric array indicating cluster for each datapoint
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | # Read from file, build self-organizing map and minimal spanning tree
fileName <- system.file("extdata", "68983.fcs", package="FlowSOM")
flowSOM.res <- ReadInput(fileName, compensate=TRUE,transform=TRUE,
scale=TRUE)
flowSOM.res <- BuildSOM(flowSOM.res,colsToUse=c(9,12,14:18))
flowSOM.res <- BuildMST(flowSOM.res)
# Apply metaclustering
metacl <- MetaClustering(flowSOM.res$map$codes,
"metaClustering_consensus",
max=10)
# Get metaclustering per cell
flowSOM.clustering <- metacl[flowSOM.res$map$mapping[,1]]
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.