Nothing
#######################################################################
#
# Package Name: SeqArray
#
# Description:
# Data Management of Large-scale Whole-Genome Sequence Variant Calls
#
#######################################################################
.onLoad <- function(lib, pkg)
{
.Call(SEQ_Pkg_Init, .dim_name, process_count, process_index)
TRUE
}
.Last.lib <- function(libpath)
{
cl <- getOption("seqarray.parallel", FALSE)
if (inherits(cl, "cluster"))
{
if (requireNamespace("parallel", quietly=TRUE))
parallel::stopCluster(cl)
options(seqarray.parallel=NULL)
}
}
#######################################################################
# Get the file name of an example
#
seqExampleFileName <- function(type=c("gds", "vcf", "KG_Phase1"))
{
type <- match.arg(type)
switch(type,
gds =
system.file("extdata", "CEU_Exon.gds", package="SeqArray"),
vcf =
system.file("extdata", "CEU_Exon.vcf.gz", package="SeqArray"),
KG_Phase1 =
system.file("extdata", "1KG_phase1_release_v3_chr22.gds",
package="SeqArray")
)
}
#######################################################################
# Setup the parallel parameters in SeqArray
#
seqParallelSetup <- function(cluster=TRUE, verbose=TRUE)
{
# check
stopifnot(is.null(cluster) | is.logical(cluster) |
is.numeric(cluster) | inherits(cluster, "cluster"))
stopifnot(is.logical(verbose), length(verbose)==1L)
if (is.null(cluster) || identical(cluster, FALSE))
{
opt <- getOption("seqarray.parallel", NULL)
if (inherits(opt, "cluster"))
stopCluster(opt)
if (verbose)
cat("Stop the computing cluster.\n")
options(seqarray.parallel=cluster)
return(invisible())
}
# Windows platform does not support forking, we have to setup a cluster
if (.Platform$OS.type == "windows")
{
setup <- function(num.cores)
{
cl <- makeCluster(num.cores)
clusterCall(cl, function() {
library(SeqArray, quietly=TRUE, verbose=FALSE)
TRUE
})
cl
}
if (is.logical(cluster))
{
stopifnot(length(cluster) == 1L)
if (cluster)
{
cl <- detectCores() - 1L
if (cl <= 1L) cl <- 2L
cluster <- setup(cl)
if (verbose)
cat("Enable the computing cluster with", cl, "R processes.\n")
} else {
if (verbose) cat("No computing cluster.\n")
}
} else if (is.numeric(cluster))
{
stopifnot(length(cluster) == 1L)
if (cluster > 1L)
{
cl <- cluster
cluster <- setup(cluster)
if (verbose)
cat("Enable the computing cluster with", cl, "R processes.\n")
}
}
} else {
# unix forking technique
if (identical(cluster, TRUE))
{
n <- detectCores() - 1L
if (n <= 1L) n <- 2L
if (verbose)
cat("Enable the computing cluster with", n, "forked R processes.\n")
} else if (is.numeric(cluster))
{
stopifnot(length(cluster) == 1L)
if (cluster > 1L)
{
if (verbose)
cat("Enable the computing cluster with", cluster, "forked R processes.\n")
}
}
}
options(seqarray.parallel=cluster)
invisible()
}
#######################################################################
# Get the parallel parameters in SeqArray
#
seqGetParallel <- function()
{
getOption("seqarray.parallel", FALSE)
}
#######################################################################
# Storage options for the SeqArray GDS file
#
seqStorageOption <- function(compression=c("ZIP_RA", "ZIP_RA.fast",
"ZIP_RA.max", "LZ4_RA", "LZ4_RA.fast", "LZ4_RA.max",
"LZMA_RA", "LZMA_RA.fast", "LZMA_RA.max", "Ultra", "UltraMax", "none"),
mode=NULL, float.mode="float32", geno.compress=NULL, info.compress=NULL,
format.compress=NULL, index.compress=NULL, ...)
{
# check
compression <- match.arg(compression)
z <- switch(compression,
none="", Ultra="LZMA_RA.ultra", UltraMax="LZMA_RA.ultra_max")
if (!is.null(z)) compression <- z
stopifnot(is.null(mode) | is.character(mode))
stopifnot(is.character(float.mode), length(float.mode) > 0L)
if (!is.null(geno.compress))
stopifnot(is.character(geno.compress), length(geno.compress)==1L)
if (!is.null(info.compress))
stopifnot(is.character(info.compress), length(info.compress)==1L)
if (!is.null(format.compress))
stopifnot(is.character(format.compress), length(format.compress)==1L)
if (!is.null(index.compress))
stopifnot(is.character(index.compress), length(index.compress)==1L)
if (compression %in% c("ZIP_RA.max", "LZ4_RA.max", "LZMA_RA.max"))
{
suf_b <- ":1M"; suf_i <- ":1M"; suf_f <- ":4M"
if (is.null(index.compress)) index.compress <- compression
} else if (compression=="LZMA_RA.ultra")
{
suf_b <- ":4M"; suf_i <- ":4M"; suf_f <- ":8M"
if (is.null(index.compress)) index.compress <- "LZMA.max"
} else if (compression=="LZMA_RA.ultra_max")
{
suf_b <- suf_i <- suf_f <- ":8M"
if (is.null(index.compress)) index.compress <- "LZMA.max"
} else {
suf_b <- suf_i <- ""
suf_f <- ":1M"
if (is.null(index.compress)) index.compress <- compression
}
if (is.null(geno.compress))
{
if (compression == "LZMA_RA.ultra")
geno.compress <- "LZMA_RA.ultra:1M"
else if (compression == "LZMA_RA.ultra_max")
geno.compress <- "LZMA_RA.ultra_max:8M"
}
rv <- list(compression = paste0(compression, suf_b),
mode = mode, float.mode = float.mode,
geno.compress = ifelse(is.null(geno.compress), compression,
geno.compress),
info.compress = ifelse(is.null(info.compress),
ifelse(compression=="", "", paste0(compression, suf_i)),
info.compress),
format.compress = ifelse(is.null(format.compress),
ifelse(compression=="", "", paste0(compression, suf_f)),
format.compress),
index.compress = index.compress,
...)
class(rv) <- "SeqGDSStorageClass"
return(rv)
}
#######################################################################
# Apply functions in parallel
#
seqParallel <- function(cl=seqGetParallel(), gdsfile, FUN,
split=c("by.variant", "by.sample", "none"), .combine="unlist",
.selection.flag=FALSE, .initialize=NULL, .finalize=NULL, .initparam=NULL,
.balancing=FALSE, .bl_size=10000L, .bl_progress=FALSE, ...)
{
# check
stopifnot(is.null(cl) | is.logical(cl) | is.numeric(cl) |
inherits(cl, "cluster") | inherits(cl, "BiocParallelParam"))
stopifnot(is.null(gdsfile) | inherits(gdsfile, "SeqVarGDSClass"))
stopifnot(is.function(FUN))
split <- match.arg(split)
stopifnot(is.character(.combine) | is.function(.combine))
stopifnot(is.null(.initialize) | is.function(.initialize))
stopifnot(is.null(.finalize) | is.function(.finalize))
stopifnot(is.logical(.selection.flag), length(.selection.flag)==1L)
stopifnot(is.logical(.balancing), length(.balancing)==1L)
if (isTRUE(.balancing))
{
stopifnot(is.numeric(.bl_size), is.finite(.bl_size),
length(.bl_size)==1L, .bl_size > 0L)
stopifnot(is.logical(.bl_progress), length(.bl_progress)==1L)
}
if (is.character(.combine))
{
stopifnot(length(.combine) == 1L)
if (!(.combine %in% c("unlist", "list", "none")))
.combine <- match.fun(.combine)
}
# check dimension
if (is.null(gdsfile))
{
if (split != "none")
stop("'split' should be 'none' if 'gdsfile=NULL'.")
} else {
dm <- .seldim(gdsfile)
if (split == "by.variant")
{
if (dm[3L] <= 0L) stop("No variants selected.")
} else if (split == "by.sample") {
if (dm[2L] <= 0L) stop("No samples selected.")
}
}
# initialize internally
.Call(SEQ_IntAssign, process_index, 1L)
.Call(SEQ_IntAssign, process_count, 1L)
# get the number of workers
njobs <- .NumParallel(cl)
if (njobs <= 1L)
{
if (is.function(.initialize)) .initialize(1L, .initparam)
on.exit({
if (is.function(.finalize)) .finalize(1L, .initparam)
})
## a single process
if (.selection.flag)
{
dm <- .seldim(gdsfile)
if (split == "by.variant")
ans <- FUN(gdsfile, rep(TRUE, dm[3L]), ...)
else if (split == "by.sample")
ans <- FUN(gdsfile, rep(TRUE, dm[2L]), ...)
else
ans <- FUN(gdsfile, NULL, ...)
} else {
if (is.null(gdsfile))
ans <- FUN(...)
else
ans <- FUN(gdsfile, ...)
}
} else if (inherits(cl, "cluster"))
{
## multiple processes with a predefined cluster
if (is.function(.initialize))
{
clusterApply(cl, seq_len(njobs), function(i, param)
.initialize(i, param), param=.initparam)
}
if (split %in% c("by.variant", "by.sample"))
{
if (split == "by.variant")
{
if (length(cl) > dm[3L]) cl <- cl[seq_len(dm[3L])]
} else {
if (length(cl) > dm[2L]) cl <- cl[seq_len(dm[2L])]
}
sel <- seqGetFilter(gdsfile, .useraw=TRUE)
} else {
sel <- list(sample.sel=raw(), variant.sel=raw())
}
if (!isTRUE(.balancing) || split=="none")
{
on.exit({
if (is.function(.finalize))
{
clusterApply(cl, seq_len(njobs), function(i, param)
.finalize(i, param), param=.initparam)
}
})
ans <- .DynamicClusterCall(cl, length(cl), .fun =
function(.proc_idx, .proc_cnt, .gds.fn, .sel_sample, .sel_variant,
FUN, .split, .selection.flag, ...)
{
# load the package
library(SeqArray, quietly=TRUE, verbose=FALSE)
# export to global variables
.Call(SEQ_IntAssign, process_index, .proc_idx)
.Call(SEQ_IntAssign, process_count, .proc_cnt)
if (is.null(.gds.fn))
{
# call the user-defined function
return(FUN(...))
} else if (is.character(.gds.fn))
{
# open the file
.file <- seqOpen(.gds.fn, readonly=TRUE, allow.duplicate=TRUE)
on.exit(seqClose(.file))
} else {
.file <- .gds.fn
}
# set filter
seqSetFilter(.file,
sample.sel = memDecompress(.sel_sample, type="gzip"),
variant.sel = memDecompress(.sel_variant, type="gzip"),
verbose=FALSE)
.ss <- .Call(SEQ_SplitSelection, .file, .split, .proc_idx,
.proc_cnt, .selection.flag)
# call the user-defined function
if (.selection.flag) FUN(.file, .ss, ...) else FUN(.file, ...)
}, .combinefun=.combine, .proc_cnt=njobs,
.gds.fn = if (is.null(attr(cl, "forking"))) gdsfile$filename else gdsfile,
.sel_sample = memCompress(sel$sample.sel, type="gzip"),
.sel_variant = memCompress(sel$variant.sel, type="gzip"),
FUN = FUN, .split = split, .selection.flag = .selection.flag, ...
)
} else {
## load balancing
# selection indexing
sel <- seqGetFilter(gdsfile)
if (split == "by.variant")
{
totnum <- dm[3L] %/% .bl_size
if (dm[3L] %% .bl_size) totnum <- totnum + 1L
if (totnum < njobs)
{
.bl_size <- dm[3L] %/% njobs
if (dm[3L] %% njobs) .bl_size <- .bl_size + 1L
totnum <- dm[3L] %/% .bl_size
if (dm[3L] %% .bl_size) totnum <- totnum + 1L
}
sel_idx <- which(sel$variant.sel)
} else {
totnum <- dm[2L] %/% .bl_size
if (dm[2L] %% .bl_size) totnum <- totnum + 1L
if (totnum < njobs)
{
.bl_size <- dm[2L] %/% njobs
if (dm[2L] %% njobs) .bl_size <- .bl_size + 1L
totnum <- dm[2L] %/% .bl_size
if (dm[2L] %% .bl_size) totnum <- totnum + 1L
}
sel_idx <- which(sel$sample.sel)
}
proglen <- length(sel_idx)
progress <- if (.bl_progress) .seqProgress(proglen, njobs) else NULL
sel_idx <- sel_idx[seq.int(1L, by=.bl_size, length.out=totnum)]
updatefun <- function(i) .seqProgForward(progress, .bl_size)
# initialize
clusterCall(cl, fun=function(gds, sel_sample, sel_variant, sel_idx, proglen)
{
# load the package
library(SeqArray, quietly=TRUE, verbose=FALSE)
# export to global variables
.Call(SEQ_IntAssign, process_index, 0L)
.Call(SEQ_IntAssign, process_count, 0L)
# open the file
if (is.character(gds))
gds <- seqOpen(gds, readonly=TRUE, allow.duplicate=TRUE)
# save interally
.packageEnv$gfile <- gds
.packageEnv$sample.sel <- memDecompress(sel_sample, type="gzip")
.packageEnv$variant.sel <- memDecompress(sel_variant, type="gzip")
.packageEnv$proglen <- proglen
# set filter
seqSetFilter(.packageEnv$gfile,
sample.sel = .packageEnv$sample.sel,
variant.sel = .packageEnv$variant.sel,
verbose=FALSE)
NULL
}, gds = if (is.null(attr(cl, "forking"))) gdsfile$filename else gdsfile,
sel_sample = memCompress(as.raw(sel$sample.sel), type="gzip"),
sel_variant = memCompress(as.raw(sel$variant.sel), type="gzip"),
sel_idx = sel_idx, proglen = proglen
)
# finalize
on.exit({
clusterCall(cl, fun=function(gds)
{
if (inherits(.packageEnv$gfile, "SeqVarGDSClass"))
seqClose(.packageEnv$gfile)
.packageEnv$gfile <- NULL
})
if (is.function(.finalize))
{
clusterApply(cl, seq_len(njobs), function(i, param)
.finalize(i, param), param=.initparam)
}
})
# do parallel
ans <- .DynamicClusterCall(cl, totnum, .fun =
function(.idx, FUN, .split, .sel_idx, .bl_size, .selection.flag, ...)
{
# set filter
.ss <- .Call(SEQ_SplitSelectionX, .packageEnv$gfile, .idx, .split,
.sel_idx, .packageEnv$variant.sel, .packageEnv$sample.sel,
.bl_size, .selection.flag, .packageEnv$proglen)
# call the user-defined function
if (.selection.flag)
FUN(.packageEnv$gfile, .ss, ...)
else
FUN(.packageEnv$gfile, ...)
}, .combinefun=.combine, .updatefun=updatefun, FUN = FUN,
.split = (split=="by.variant"), .sel_idx = sel_idx, .bl_size = .bl_size,
.selection.flag = .selection.flag, ...
)
remove(progress)
}
if (is.list(ans) & identical(.combine, "unlist"))
ans <- unlist(ans, recursive=FALSE)
} else if (inherits(cl, "BiocParallelParam"))
{
## multiple processes with a predefined cluster from BiocParallel
if (is.function(.initialize))
{
BiocParallel::bplapply(seq_len(njobs), function(i) .initialize(i),
BPPARAM=cl)
}
on.exit({
if (is.function(.finalize))
{
BiocParallel::bplapply(seq_len(njobs), function(i) .finalize(i),
BPPARAM=cl)
}
})
if (split %in% c("by.variant", "by.sample"))
{
sel <- seqGetFilter(gdsfile, .useraw=TRUE)
} else {
sel <- list(sample.sel=raw(), variant.sel=raw())
}
ans <- BiocParallel::bplapply(seq_len(njobs), FUN =
function(.proc_idx, .proc_cnt, .gds.fn, .sel_sample, .sel_variant,
.FUN, .split, .selection.flag, ...)
{
# load the package
library(SeqArray, quietly=TRUE, verbose=FALSE)
# export to global variables
.Call(SEQ_IntAssign, process_index, .proc_idx)
.Call(SEQ_IntAssign, process_count, .proc_cnt)
if (is.null(.gds.fn))
{
# call the user-defined function
.FUN(...)
} else {
# open the file
.file <- seqOpen(.gds.fn, readonly=TRUE, allow.duplicate=TRUE)
on.exit({ seqClose(.file) })
# set filter
seqSetFilter(.file,
sample.sel = memDecompress(.sel_sample, type="gzip"),
variant.sel = memDecompress(.sel_variant, type="gzip"),
verbose=FALSE)
.ss <- .Call(SEQ_SplitSelection, .file, .split, .proc_idx,
.proc_cnt, .selection.flag)
# call the user-defined function
if (.selection.flag) FUN(.file, .ss, ...) else FUN(.file, ...)
}
}, .proc_cnt = njobs, .gds.fn = gdsfile$filename,
.sel_sample = memCompress(sel$sample.sel, type="gzip"),
.sel_variant = memCompress(sel$variant.sel, type="gzip"),
.FUN = FUN, .split = split, .selection.flag=.selection.flag,
..., BPPARAM=cl)
if (is.list(ans))
{
if (identical(.combine, "unlist"))
{
ans <- unlist(ans, recursive=FALSE)
} else if (is.function(.combine))
{
rv <- ans[[1L]]
for (i in seq_len(length(ans)-1L) + 1L)
rv <- .combine(rv, ans[[i]])
ans <- rv
}
}
} else {
## forking processes
if (getOption("seqarray.nofork", FALSE) || .Platform$OS.type=="windows")
{
# no forking on windows
cl <- makeCluster(njobs, outfile="")
on.exit(stopCluster(cl))
return(seqParallel(cl, gdsfile, FUN, split, .combine, .selection.flag,
.initialize, .finalize, .initparam,
.balancing, .bl_size, .bl_progress, ...))
}
if (is.function(.initialize))
.initialize(NA_integer_, .initparam)
if (is.function(.finalize))
on.exit(.finalize(NA_integer_, .initparam))
if (split %in% c("by.variant", "by.sample"))
{
if (split == "by.variant")
{
if (njobs > dm[3L]) njobs <- dm[3L]
} else {
if (njobs > dm[2L]) njobs <- dm[2L]
}
}
if (!isTRUE(.balancing) || split=="none")
{
ans <- .DynamicForkCall(njobs, njobs, .fun = function(.jobidx, ...)
{
# export to global variables
.Call(SEQ_IntAssign, process_index, .jobidx)
.Call(SEQ_IntAssign, process_count, njobs)
if (!is.null(gdsfile))
{
# set filter
.ss <- .Call(SEQ_SplitSelection, gdsfile, split, .jobidx, njobs,
.selection.flag)
# call the user-defined function
if (.selection.flag) FUN(gdsfile, .ss, ...) else FUN(gdsfile, ...)
} else {
FUN(...)
}
}, .combinefun=.combine, .updatefun=NULL, ...)
} else {
## load balancing
# selection indexing
.sel <- seqGetFilter(gdsfile)
if (split == "by.variant")
{
totnum <- dm[3L] %/% .bl_size
if (dm[3L] %% .bl_size) totnum <- totnum + 1L
if (totnum < njobs)
{
.bl_size <- dm[3L] %/% njobs
if (dm[3L] %% njobs) .bl_size <- .bl_size + 1L
totnum <- dm[3L] %/% .bl_size
if (dm[3L] %% .bl_size) totnum <- totnum + 1L
# cat("totnum: ", totnum, ", .bl_size: ", .bl_size, "\n", sep="")
}
.sel_idx <- which(.sel$variant.sel)
} else {
totnum <- dm[2L] %/% .bl_size
if (dm[2L] %% .bl_size) totnum <- totnum + 1L
if (totnum < njobs)
{
.bl_size <- dm[2L] %/% njobs
if (dm[2L] %% njobs) .bl_size <- .bl_size + 1L
totnum <- dm[2L] %/% .bl_size
if (dm[2L] %% .bl_size) totnum <- totnum + 1L
}
.sel_idx <- which(.sel$sample.sel)
}
.proglen <- length(.sel_idx)
progress <- if (.bl_progress) .seqProgress(.proglen, njobs) else NULL
.sel_idx <- .sel_idx[seq.int(1L, by=.bl_size, length.out=totnum)]
.sel <- seqGetFilter(gdsfile, .useraw=TRUE)
split <- split == "by.variant"
# do parallel
ans <- .DynamicForkCall(njobs, totnum, .fun = function(.jobidx, ...)
{
# set filter
.ss <- .Call(SEQ_SplitSelectionX, gdsfile, .jobidx, split,
.sel_idx, .sel$variant.sel, .sel$sample.sel,
.bl_size, .selection.flag, .proglen)
# call the user-defined function
if (.selection.flag) FUN(gdsfile, .ss, ...) else FUN(gdsfile, ...)
}, .combinefun=.combine,
.updatefun=function(i) .seqProgForward(progress, .bl_size), ...)
remove(progress)
}
if (is.list(ans) & identical(.combine, "unlist"))
ans <- unlist(ans, recursive=FALSE)
}
# output
if (identical(.combine, "none"))
invisible()
else
ans
}
seqParApply <- function(cl=seqGetParallel(), x, FUN, load.balancing=TRUE, ...)
{
njobs <- .NumParallel(cl, "cl")
stopifnot(is.logical(load.balancing))
if (njobs <= 1L)
{
## a single process
ans <- lapply(x, FUN, ...)
} else if (inherits(cl, "BiocParallelParam"))
{
ans <- BiocParallel::bplapply(x, FUN, ..., BPPARAM=cl)
} else {
if (!inherits(cl, "cluster"))
{
if (.Platform$OS.type == "windows")
cl <- makeCluster(njobs)
else
cl <- makeForkCluster(njobs)
on.exit({ stopCluster(cl) })
}
# a load balancing version
if (isTRUE(load.balancing))
ans <- clusterApplyLB(cl, x, FUN, ...)
else
ans <- clusterApply(cl, x, FUN, ...)
}
ans
}
#######################################################################
# Modify the SeqArray data structure
#######################################################################
#######################################################################
# Delete data variables
#
seqDelete <- function(gdsfile, info.var=character(), fmt.var=character(),
samp.var=character(), verbose=TRUE)
{
# check
stopifnot(inherits(gdsfile, "SeqVarGDSClass"))
if (gdsfile$readonly)
stop("The GDS file is read-only.")
stopifnot(is.character(info.var))
stopifnot(is.character(fmt.var))
stopifnot(is.character(samp.var))
stopifnot(is.logical(verbose), length(verbose)==1L)
if (verbose) cat("Delete INFO variable(s):")
for (nm in info.var)
{
n <- index.gdsn(gdsfile, paste0("annotation/info/", nm))
delete.gdsn(n, force=TRUE)
n <- index.gdsn(gdsfile, paste0("annotation/info/@", nm), silent=TRUE)
if (!is.null(n))
delete.gdsn(n, force=TRUE)
if (verbose) cat("", nm)
}
if (verbose) cat("\n")
if (verbose) cat("Delete FORMAT variable(s):")
for (nm in fmt.var)
{
n <- index.gdsn(gdsfile, paste0("annotation/format/", nm))
delete.gdsn(n, force=TRUE)
if (verbose) cat("", nm)
}
if (verbose) cat("\n")
if (verbose) cat("Delete Sample Annotation variable(s):")
for (nm in samp.var)
{
n <- index.gdsn(gdsfile, paste0("sample.annotation/", nm))
delete.gdsn(n, force=TRUE)
if (verbose) cat("", nm)
}
if (verbose) cat("\n")
# return
invisible()
}
#######################################################################
# Transpose data variable(s)
#
.Transpose <- function(gdsfile, src.fn, prefix, compress=NULL)
{
dst.fn <- .var_path(src.fn, prefix)
if (is.null(index.gdsn(gdsfile, dst.fn, silent=TRUE)))
{
node <- index.gdsn(gdsfile, src.fn)
desp <- objdesp.gdsn(node)
dm <- desp$dim
if (length(dm) > 1L)
{
# dimension
dm <- c(dm[-(length(dm)-1L)], 0L)
# folder
nm <- unlist(strsplit(src.fn, "/"))
if (length(nm) <= 1)
folder <- gdsfile$root
else
folder <- index.gdsn(gdsfile, index=nm[-length(nm)])
# compress
if (is.null(compress))
compress <- desp$compress
pm <- list(node = folder,
name = paste(prefix, nm[length(nm)], sep=""),
val = NULL, storage = desp$storage,
valdim = dm, compress = compress)
if (!is.null(desp$param))
pm <- c(pm, desp$param)
newnode <- do.call(add.gdsn, pm)
moveto.gdsn(newnode, node, relpos="after")
# write data
apply.gdsn(node, margin=length(dm)-1L, as.is="gdsnode",
FUN=`c`, target.node=newnode, .useraw=TRUE)
readmode.gdsn(newnode)
}
}
invisible()
}
seqTranspose <- function(gdsfile, var.name, compress=NULL, digest=TRUE, verbose=TRUE)
{
# check
stopifnot(inherits(gdsfile, "SeqVarGDSClass"))
stopifnot(is.character(var.name) & is.vector(var.name))
stopifnot(length(var.name) == 1L)
stopifnot(is.logical(digest) | is.character(digest), length(digest)==1L)
stopifnot(is.logical(verbose), length(verbose)==1L)
node <- index.gdsn(gdsfile, var.name)
desp <- objdesp.gdsn(node)
dm <- desp$dim
if (length(dm) > 1L)
{
# dimension
dm <- c(dm[-(length(dm)-1L)], 0L)
# folder
index <- unlist(strsplit(var.name, "/"))
if (length(index) <= 1L)
folder <- gdsfile$root
else
folder <- index.gdsn(gdsfile, index=index[-length(index)])
# compress
if (is.null(compress))
compress <- desp$compress
name <- paste("~", index[length(index)], sep="")
newnode <- add.gdsn(folder, name, val=NULL, storage=desp$storage,
valdim=dm, compress=compress)
moveto.gdsn(newnode, node, relpos="after")
# write data
apply.gdsn(node, margin=length(dm)-1L, as.is="none", FUN=function(g) {
append.gdsn(newnode, g)
}, .useraw=TRUE)
readmode.gdsn(newnode)
.DigestCode(newnode, digest, FALSE)
if (verbose)
print(newnode, attribute=TRUE, attribute.trim=TRUE)
} else
warning("It is a vector.")
invisible()
}
#######################################################################
# Optimize data by transposing
#
.optim_chrom <- function(gdsfile)
{
n <- index.gdsn(gdsfile, "chromosome")
readmode.gdsn(n)
chr <- read.gdsn(n)
s <- rle(chr)
n1 <- add.gdsn(gdsfile, "@chrom_rle_val", s$values, replace=TRUE,
visible=FALSE)
n2 <- add.gdsn(gdsfile, "@chrom_rle_len", s$lengths, replace=TRUE,
visible=FALSE)
moveto.gdsn(n2, n)
moveto.gdsn(n1, n)
invisible()
}
seqOptimize <- function(gdsfn, target=c("chromosome", "by.sample"),
format.var=TRUE, cleanup=TRUE, verbose=TRUE)
{
# check
stopifnot(is.character(gdsfn), length(gdsfn)==1L)
target <- match.arg(target)
stopifnot(is.logical(format.var) || is.character(format.var))
stopifnot(is.logical(cleanup), length(cleanup)==1L)
stopifnot(is.logical(verbose), length(verbose)==1L)
gdsfile <- seqOpen(gdsfn, readonly=FALSE)
on.exit({ seqClose(gdsfile) })
if ("by.sample" %in% target)
{
# genotype
if (verbose) cat("Working on 'genotype' ...\n")
.Transpose(gdsfile, "genotype/data", "~")
# phase
if (verbose) cat("Working on 'phase' ...\n")
.Transpose(gdsfile, "phase/data", "~")
# annotation - format
if (identical(format.var, TRUE) || is.character(format.var))
{
n <- index.gdsn(gdsfile, "annotation/format", silent=TRUE)
if (!is.null(n))
{
nm <- ls.gdsn(n)
if (identical(format.var, TRUE))
format.var <- nm
for (i in nm)
{
if (i %in% format.var)
{
if (verbose)
{
cat("Working on 'annotation/format/", i,
"' ...\n", sep="")
}
.Transpose(gdsfile,
paste("annotation/format", i, "data", sep="/"), "~")
}
}
}
}
} else if ("chromosome" %in% target)
{
if (verbose)
cat("Adding run-length encoding for chromosome coding ...")
.optim_chrom(gdsfile)
if (verbose)
cat(" [Done]\n")
}
if (cleanup)
{
on.exit()
seqClose(gdsfile)
cleanup.gds(gdsfn, verbose=verbose)
}
invisible()
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.