Nothing
#' @title Run TPP-CCR analysis for 2D-TPP experiment
#'
#' @description Performs analysis of a TPP-CCR experiment by invoking the routine
#' for TPP-CCR curve fitting for each temperature of the sample.
#'
#' @return A data frames in which the fit results are stored row-wise for each
#' protein.
#'
#' @examples
#' # Preparation:
#' data(panobinostat_2DTPP_smallExample)
#'
#' # Import data:
#' datIn <- tpp2dImport(configTable = panobinostat_2DTPP_config,
#' data = panobinostat_2DTPP_data,
#' idVar = "representative",
#' addCol = "clustername",
#' intensityStr = "sumionarea_protein_",
#' nonZeroCols = "qusm")
#'
#' # Compute fold changes:
#' datFC <- tpp2dComputeFoldChanges(data = datIn)
#'
#' # Perform median normalization:
#' datNorm <- tpp2dNormalize(data = datFC)
#'
#' # View updated attributes. Now contain field 'fcStrNorm' indicating prefix
#' # of the fold change columns after normalization.
#' attr(datNorm, "importSettings")["fcStrNorm"]
#'
#' # Perform dose response curve fitting and pEC50 calculation:
#' datFit <- tpp2dCurveFit(data = datNorm)
#'
#' @param configFile DEPCRECATED
#' @param data data frame that contains the data of the 2D-TPP
#' experiment for each temperature.
#' @param nCores numeric value stating how many cores are to be used for computation
#' @param naStrs DEPCRECATED
#' @param fcStr DEPCRECATED
#' @param idVar DEPCRECATED
#' @param nonZeroCols DEPCRECATED
#' @param r2Cutoff Quality criterion on dose response curve fit.
#' @param fcCutoff Cutoff for highest compound concentration fold change.
#' @param slopeBounds Bounds on the slope parameter for dose response curve
#' fitting.
#' @param fcTolerance tolerance for the fcCutoff parameter. See details.
#'
#' @export
tpp2dCurveFit <- function(configFile = NULL,
data,
nCores = 1,
naStrs = NULL,
fcStr = NULL,
idVar = NULL,
nonZeroCols = NULL,
r2Cutoff = 0.8,
fcCutoff = 1.5,
slopeBounds = c(1,50),
fcTolerance = 0.1){
if (!missing(configFile)){
warning("`configFile` is deprecated.", call. = TRUE)
}
if (!missing(naStrs)){
warning("`naStrs` is deprecated.", call. = TRUE)
}
if (!missing(fcStr)){
warning("`fcStr` is deprecated.", call. = TRUE)
}
if (!missing(idVar)){
warning("`idVar` is deprecated.", call. = TRUE)
}
if (!missing(nonZeroCols)){
warning("`nonZeroCols` is deprecated.", call. = TRUE)
}
# Check for missing function arguments
checkFunctionArgs(match.call(), c("data"))
# Obtain config table used for data import (stored as attribute of imported data):
configTable <- attr(data, "configTable")
# Obtain settings used for data import (stored as attribute of imported data):
importSettings <- attr(data, "importSettings")
uniqueIdCol <- importSettings$uniqueIdCol
# Check whether uniqueIdCol has class character.
if (is.null(uniqueIdCol)){
stop("attr(data, 'uniqueIdCol') must contain a field named 'uniqueIdCol'.")
} else if (!is.character(uniqueIdCol)){
stop("attr(data, 'importSettings')$uniqueIdCol must be of class character.")
} else {
message("Looking for unique ID column: '", uniqueIdCol, "'")
}
if (!uniqueIdCol %in% colnames(data)){
stop("Please specify an uniqueIdCol character string argument that represents a suffix of one of
the column names of your data!")
} else if (length(data[[uniqueIdCol]])!=length(unique(data[[uniqueIdCol]]))){
stop("Please indicate an uniqueIdCol character string that matches a column with unique identifiers!")
}
nonZeroCols <- importSettings$nonZeroCols
# Check whether nonZeroCols are valid column names.
if (is.null(nonZeroCols)){
stop("attr(data, 'importSettings') must contain a field named 'nonZeroCols'.")
} else if (!is.character(nonZeroCols)){
stop("attr(data, 'importSettings')$nonZeroCols must be of class character.")
} else {
message("Looking for nonZeroCols: '", nonZeroCols, "'")
}
if (!all(nonZeroCols %in% colnames(data))){
stop("The given QC columns (specified by attr(data, 'importSettings')$nonZeroCols) were not found in the column names of 'data'.")
}
# Choose correct fold change column prefix (automatically detects whether
# to use the prefix for normalized columns).
finalFcPrefix <- obtain_fcStr_from_df_annotation(dat = data)
message("Performing TPP-CCR dose response curve fitting and generating result table...")
# create CCR config file list
cfgIn <- convert_2D_cfgTable_to_CCR_cfgTable(configTable = configTable)
# Re-format data as data frame: -> to do: ask Nils for reasons
datIn <- as.data.frame(data)
CCRresult <- suppressMessages(
analyzeTPPCCR(configTable = cfgIn,
data = datIn,
nCores = nCores,
resultPath = NULL,
plotCurves = FALSE,
fcStr = finalFcPrefix,
naStrs=c("NA", "n/d", "NaN", "<NA>"),
qualColName="qupm",
xlsxExport = FALSE,
idVar = uniqueIdCol,
nonZeroCols = nonZeroCols,
normalize = FALSE,
r2Cutoff = r2Cutoff,
fcCutoff = fcCutoff,
slopeBounds = slopeBounds,
fcTolerance = fcTolerance,
ggplotTheme = NULL,
verbose=FALSE)
)
# Remove compound name suffix from each column of TPPCCR output
compound <- as.character(cfgIn$Experiment)
allCols <- colnames(CCRresult)
newCols <- sub(paste("*_", compound, sep=""), "", allCols)
colnames(CCRresult) <- newCols
message("Done.")
# Transfer attributes to newly created data frame
importSettings$r2Cutoff <- r2Cutoff
importSettings$fcCutoff <- fcCutoff
importSettings$slopeBounds <- slopeBounds
importSettings$fcTolerance <- fcTolerance
importSettings$uniqueIdCol <- "Protein_ID"
attr(CCRresult, "importSettings") <- importSettings
attr(CCRresult, "configTable") <- configTable
return(CCRresult)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.