Nothing
# ccCompare - here we have the functions that actually generate comparisons between the enriched annotations determined
# for each gene list. operates on a ccEnrichCollection object, with a ccOptions object, and a directory name to save everything to.
# Must be able to dispatch different methods depending on whether or not the sub-objects are GO or KEGG or generic.
# Note: need to make this a generic eventually and then use a method definition so that we only operate on the correct classes
setMethod("ccCompare", signature=list(ccEnrichResult="ccEnrichCollection",ccOptions="ccOptions"),
function(ccEnrichResult, ccOptions) .ccCompare(ccEnrichResult, ccOptions))
.ccCompare <- function(ccEnrichResult, ccOptions){
# apply ccCompare to each sub-object, using the
allCompare <- lapply(ccEnrichResult, ccCompare, ccOptions)
allCompare <- new("ccCompareCollection", allCompare)
}
setMethod("ccCompare", signature=list(ccEnrichResult="GOccEnrichResult", ccOptions="ccOptions"),
function(ccEnrichResult, ccOptions) .ccCompareGO(ccEnrichResult, ccOptions))
.ccCompareGO <- function(ccEnrichResult, ccOptions){
annOpt <- annStatus() # what can we do. This will possibly change the type of results we can generate
if (!annOpt$godb){
stop('GO.db needs to be loaded for GOccEnrichResult objects!')
}
GOstrings <- c(BP = GOBPPARENTS, MF=GOMFPARENTS, CC=GOCCPARENTS)
GOnames <- names(GOstrings)
lists <- names(ccEnrichResult)
useLists <- listNames(ccOptions)
if (sum(lists %in% useLists) == 0){
stop('listNames defined in ccOptions do not match any of the names in the GOccEnrichResult object!')
} else {
ccEnrichResult <- ccEnrichResult[useLists]
lists <- names(ccEnrichResult)
nList <- length(lists)
}
ccGOType <- ccEnrichResult@ontology
# Extract the results from the ccEnrichResult object
extRes <- .extractRes(ccEnrichResult)
allTable <- extRes$allTable
allNodes <- extRes$allNodes
allRes <- extRes$allRes
sigID <- extRes$sigID
rm(extRes) # free up some memory
# get a more descriptive item for each ID
idDat <- mget(allTable$ID, envir=GOTERM, ifnotfound=NA)
idDat <- lapply(idDat, Term)
idDat <- unlist(idDat, use.names=FALSE)
allTable$Desc <- idDat
# now rearrange a few things in the table
oldIndx <- match(lists,names(allTable))
newIndx <- seq(2,2+length(oldIndx)-1,1)
allTable <- .moveTable(allTable,oldIndx,newIndx)
allTable <- .moveTable(allTable,match("Desc",names(allTable)),2)
# get the genes annotated to each term by list membership
allAnn <- .annGenesComp(allRes,ccOptions)
# now lets generate the graph based on the significant nodes
tmpList <- vector('list',nList)
nodeListMem <- vector('list',0)
if (graphType(ccEnrichResult) %in% "hierarchical"){
useRes <- GOstrings[[GOnames[names(GOstrings) %in% ccGOType]]]
allNodes <- vector('character', 0)
for (iList in 1:nList){
allRes[[iList]]$indGO <- nodes(GOGraph(allRes[[iList]]$sigIDs, useRes))
allNodes <- c(allNodes,allRes[[iList]]$indGO)
nodeListMem[[iList]] <- allRes[[iList]]$indGO
}
allNodes <- unique(allNodes)
allGraph <- GOGraph(allNodes, useRes)
allNodes <- nodes(allGraph)
names(allNodes) <- NULL
nodes(allGraph) <- allNodes
allGraph@graphData$layout <- "hierarchical"
} else if (graphType(ccEnrichResult) %in% "overlap") {
for (iList in 1:nList){
nodeListMem[[iList]] <- allRes[[iList]]$sigIDs
allRes[[iList]]$indGO <- allRes[[iList]]$sigIDs
}
allAnnotation <- unique(sapply(allRes, function(x){x$annotation}))
nAnn <- length(allAnnotation)
nSig <- length(sigID)
nodeGeneMap <- vector("list",nSig)
names(nodeGeneMap) <- sigID
if (nAnn > 1){
for (iAnn in 1:nAnn){
tmpAnn <- getGO2ALLEGS(sigID,allAnnotation[iAnn])
for (iSig in 1:nSig){
nodeGeneMap[[iSig]] <- unique(c(nodeGeneMap[[iSig]], tmpAnn[[iSig]]))
}
}
} else {
nodeGeneMap <- getGO2ALLEGS(sigID, allAnnotation)
}
allGraph <- createGraph2(sigID,nodeGeneMap,'GO')
allGraph@graphData$layout <- "force-directed"
}
names(nodeListMem) <- lists
# filter out the 'all' go node (depending on how we generated the graph it might be there
allNodes <- nodes(allGraph)
allNodes <- allNodes[!(allNodes %in% 'all')]
nNodes <- length(allNodes)
nodeCompVec <- .compMem(nodeListMem,ccOptions)
nodeCompVec <- nodeCompVec[match(allNodes,names(nodeCompVec),nomatch=0)] # and reorder to be in the same order as the nodes in the graph
# now that we know which of the lists we belong to, we can set up some attributes
allGraph <- .initGraphAtts(allGraph,allTable)
idDat <- mget(allNodes, envir=GOTERM, ifnotfound=NA)
idDat <- lapply(idDat, Term)
idDat <- unlist(idDat, use.names=FALSE)
nodeData(allGraph, allNodes, attr="Desc") <- idDat
nodeData(allGraph, allNodes, attr="fillcolor") <- sapply(nodeCompVec, function(x){compareColors(ccOptions)[x]}) # this is why we are supposed to do the induced graph from each, and then combine them.
nodeData(allGraph, allNodes, attr="listMembership") <- sapply(nodeCompVec, function(x){compareNames(ccOptions)[x]})
# check fillColor and listMembership, if any are missing, set them to NA
tmpMember <- sapply(nodeData(allGraph,allNodes,"listMembership"),length)
nodeData(allGraph,names(tmpMember)[tmpMember == 0],"listMembership") <- 'NA'
nodeData(allGraph,names(tmpMember)[tmpMember == 0],"fillcolor") <- 'NA'
nodeData(allGraph, allNodes, attr="compIndx") <- nodeCompVec # which comparison are we (if we need to access that again)
nodeData(allGraph, allNodes[allNodes %in% sigID], attr="isSig") <- as.character(TRUE)
nodeData(allGraph, allNodes, attr="toolTip") <- paste(unlist(nodeData(allGraph, allNodes, attr="listMembership")), allNodes,unlist(nodeData(allGraph, allNodes, attr="Desc")), sep=" <br> ")
# only do this if we are looking at just the overlap between lists without GO context
# if (allGraph@graphData$layout == "neato") {
# nodeData(allGraph, allNodes[allNodes %in% lists], attr="shape") <- "box"
# } else {
# nodeData(allGraph, allNodes[allNodes %in% sigID], attr="shape") <- "box"
# }
# All of these attributes are stored now in such a way that the user or one of
# our functions can access them later, even if Rgraphviz is not being used.
# maybe can use RCytoscape to view this stuff?
# now we have a graph, and a table, and the annotated genes to each entry in the table. So lets give all that back
# to the user.
returnData <- new("ccCompareResult", mainGraph=allGraph, mainTable=allTable, allAnnotation=allAnn, categoryName="GO", ontology=ccGOType)
#returnData <- list(graphs=list(mainGraph=allGraph), mainTable=allTable, allAnnotation=allAnn)
return(returnData)
}
setMethod("ccCompare", signature=list(ccEnrichResult="KEGGccEnrichResult",ccOptions="ccOptions"),
function(ccEnrichResult, ccOptions) .ccCompareKEGG(ccEnrichResult,ccOptions))
.ccCompareKEGG <- function(ccEnrichResult, ccOptions){
annOpt <- annStatus() # what can we do. This will possibly change the type of results we can generate
if (!annOpt$keggdb){
stop("KEGG.db must be loaded to continue!")
}
summary <- getGeneric("summary")
lists <- names(ccEnrichResult)
useLists <- listNames(ccOptions)
if (sum(lists %in% useLists) == 0){
stop('listNames defined in ccOptions do not match any of the names in the KEGGccEnrichResult object!')
} else {
ccEnrichResult <- ccEnrichResult[useLists]
lists <- names(ccEnrichResult)
nList <- length(lists)
}
extRes <- .extractRes(ccEnrichResult)
allTable <- extRes$allTable
allNodes <- extRes$allNodes
allRes <- extRes$allRes
sigID <- extRes$sigID
rm(extRes) # free up some memory
# get a more descriptive item for each ID
idDat <- unlist(mget(allTable$ID, envir=KEGGPATHID2NAME, ifnotfound=NA))
allTable$Desc <- idDat
# now rearrange a few things in the table
oldIndx <- match(lists,names(allTable))
newIndx <- seq(2,2+length(oldIndx)-1,1)
allTable <- .moveTable(allTable,oldIndx,newIndx)
allTable <- .moveTable(allTable,match("Desc",names(allTable)),2)
# get the genes annotated to each term by list membership
allAnn <- .annGenesComp(allRes,ccOptions)
# now lets generate the graph based on the significant nodes
nodeListMem <- vector('list',nList)
for (iList in 1:nList){
nodeListMem[[iList]] <- allRes[[iList]]$sigIDs
}
names(nodeListMem) <- lists
# this allows us to have two different organisms and compare them directly
allAnnotation <- unique(sapply(allRes, function(x){x$annotation}))
nAnn <- length(allAnnotation)
nSig <- length(sigID)
nodeGeneMap <- vector("list",nSig)
names(nodeGeneMap) <- sigID
for (iAnn in 1:nAnn){
tmpAnn <- getPATH2EG(sigID,allAnnotation[iAnn])
for (iSig in 1:nSig){
nodeGeneMap[[iSig]] <- unique(c(nodeGeneMap[[iSig]], tmpAnn[[iSig]]))
}
}
allGraph <- createGraph2(sigID,nodeGeneMap,'KEGG')
allGraph@graphData$layout <- "force-directed"
# Note that we replace allNodes now based on what is now in the graph
allNodes <- nodes(allGraph)
allNodes <- allNodes[!(allNodes %in% 'all')]
nNodes <- length(allNodes)
nodeCompVec <- .compMem(nodeListMem,ccOptions)
nodeCompVec <- nodeCompVec[match(allNodes,names(nodeCompVec),nomatch=0)] # and reorder to be in the same order as the nodes in the graph
# now that we know which of the lists we belong to, we can set up some attributes
allGraph <- .initGraphAtts(allGraph,allTable)
idDat <- unlist(mget(allNodes, envir=KEGGPATHID2NAME, ifnotfound=NA))
nodeData(allGraph, allNodes, attr="Desc") <- idDat
nodeData(allGraph, allNodes, attr="fillcolor") <- sapply(nodeCompVec, function(x){compareColors(ccOptions)[x]}) # this is why we are supposed to do the induced graph from each, and then combine them.
nodeData(allGraph, allNodes, attr="listMembership") <- sapply(nodeCompVec, function(x){compareNames(ccOptions)[x]})
# check fillColor and listMembership, if any are missing, set them to NA
tmpMember <- sapply(nodeData(allGraph,allNodes,"listMembership"),length)
nodeData(allGraph,names(tmpMember)[tmpMember == 0],"listMembership") <- 'NA'
nodeData(allGraph,names(tmpMember)[tmpMember == 0],"fillcolor") <- 'NA'
nodeData(allGraph, allNodes, attr="compIndx") <- nodeCompVec # which comparison are we (if we need to access that again)
nodeData(allGraph, allNodes[allNodes %in% sigID], attr="isSig") <- as.character(TRUE)
nodeData(allGraph, allNodes, attr="toolTip") <- paste(unlist(nodeData(allGraph, allNodes, attr="listMembership")), allNodes,unlist(nodeData(allGraph, allNodes, attr="Desc")), sep=" <br> ")
# only do this if we are looking at just the overlap between lists without GO context
# if (allGraph@graphData$layout == "neato") {
# nodeData(allGraph, allNodes[allNodes %in% lists], attr="shape") <- "box"
# } else {
# nodeData(allGraph, allNodes[allNodes %in% sigID], attr="shape") <- "box"
# }
# All of these attributes are stored now in such a way that the user or one of
# our functions can access them later, even if Rgraphviz is not being used.
# maybe can use RCytoscape to view this stuff?
# now we have a graph, and a table, and the annotated genes to each entry in the table. So lets give all that back
# to the user.
returnData <- new("ccCompareResult", mainGraph=allGraph, mainTable=allTable, allAnnotation=allAnn, categoryName="KEGG")
#returnData <- list(graphs=list(mainGraph=allGraph), mainTable=allTable, allAnnotation=allAnn)
return(returnData)
}
setMethod("ccCompare", signature=list(ccEnrichResult="GENccEnrichResult", ccOptions="ccOptions"),
function(ccEnrichResult, ccOptions) .ccCompareGeneric(ccEnrichResult, ccOptions))
.ccCompareGeneric <- function(ccEnrichResult, ccOptions){
annOpt <- annStatus() # what can we do. This will possibly change the type of results we can generate
annStr <- NULL
graphT <- graphType(ccEnrichResult)
hasMap <- FALSE
if (length(geneAnnMapping(ccEnrichResult) > 0)){
hasMap <- TRUE
}
if (!hasMap){
switch(categoryName(ccEnrichResult),
KEGG = annStr <- "PATH2EG",
GO = annStr <- "GO2ALLEG",
NULL) # put in null as an option, should allow simple control of behavior of other functions
if ((!annOpt$keggdb) && (categoryName(ccEnrichResult) == "KEGG")){
stop("KEGG requested, but KEGG.db not loaded and no geneAnnMapping supplied!")
} else if ((!annOpt$godb) && (categoryName(ccEnrichResult) == "GO")){
stop("GO requested, but GO.db not loaded and no geneAnnMapping supplied!")
}
}
if ((graphT == "hierarchical") && (categoryName(ccEnrichResult) != "GO")){
stop("Hierarchical GO layout only supported for GO!")
}
lists <- names(ccEnrichResult)
useLists <- listNames(ccOptions)
if (sum(lists %in% useLists) == 0){
stop('listNames defined in ccOptions do not match any of the names in the ccEnrichResult object!')
} else {
ccEnrichResult <- ccEnrichResult[useLists]
lists <- names(ccEnrichResult)
nList <- length(lists)
}
sigIDs <- unique(unlist(sapply(ccEnrichResult,function(x){sigID(x)})))
if (!hasMap){
tmpDesc <- .getDesc(sigIDs,categoryName(ccEnrichResult))
}
allTable <- data.frame(ID=sigIDs,Desc=tmpDesc)
# now lets generate the graph based on the significant nodes
nodeListMem <- vector('list',nList)
for (iList in 1:nList){
nodeListMem[[iList]] <- sigID(ccEnrichResult[[iList]])
}
names(nodeListMem) <- lists
# this allows us to have two different organisms and compare them directly
if (!hasMap){
allAnnotation <- unique(sapply(ccEnrichResult, function(x){annotation(x)}))
nAnn <- length(allAnnotation)
nSig <- length(sigIDs)
nodeGeneMap <- vector("list",nSig)
names(nodeGeneMap) <- sigIDs
for (iAnn in 1:nAnn){
tmpAnn <- getAnnotation(sigIDs,allAnnotation[iAnn],annStr, F)
for (iSig in 1:nSig){
nodeGeneMap[[iSig]] <- unique(c(nodeGeneMap[[iSig]], tmpAnn[[iSig]]))
}
}
}
# currently there is no support for supplying an feature-annotation map. This still needs to be implemented
# else {
# nodeGeneMap <- annGeneMap(ccEnrichResult)[sigIDs]
# }
#browser(expr=TRUE)
if (graphT == "overlap"){
allGraph <- createGraph2(sigIDs,nodeGeneMap,categoryName(ccEnrichResult))
allGraph@graphData$layout <- "force-directed"
nodeCompVec <- .compMem(nodeListMem,ccOptions)
} else if (graphT == "membership"){
allGraph <- createGraph(nodeListMem)
allGraph@graphData$layout <- "attribute-circle"
nodeCompVec <- .compMem(nodeListMem,ccOptions)
tmpVec <- unlist(ccOptions@compareIndx[names(ccOptions@compareIndx) %in% listNames(ccOptions)])
nodeCompVec <- c(nodeCompVec,tmpVec)
}
allGraph <- .initGraphAtts(allGraph,allTable)
allNodes <- nodes(allGraph)
nodeCompVec <- nodeCompVec[match(allNodes,names(nodeCompVec),nomatch=0)]
# idDat <- allTable$Desc[match(allTable$ID, allNodes, nomatch=0)]
nodeData(allGraph, allNodes, attr="Desc") <- .getDesc(allNodes,categoryName(ccEnrichResult))
nodeData(allGraph, allNodes, attr="fillcolor") <- sapply(nodeCompVec, function(x){compareColors(ccOptions)[x]}) # this is why we are supposed to do the induced graph from each, and then combine them.
nodeData(allGraph, allNodes, attr="listMembership") <- sapply(nodeCompVec, function(x){compareNames(ccOptions)[x]})
# check fillColor and listMembership, if any are missing, set them to NA
tmpMember <- sapply(nodeData(allGraph,allNodes,"listMembership"),length)
nodeData(allGraph,names(tmpMember)[tmpMember == 0],"listMembership") <- 'NA'
nodeData(allGraph,names(tmpMember)[tmpMember == 0],"fillcolor") <- 'NA'
nodeData(allGraph, allNodes, attr="compIndx") <- nodeCompVec # which comparison are we (if we need to access that again)
nodeData(allGraph, allNodes[allNodes %in% sigIDs], attr="isSig") <- as.character(TRUE)
nodeData(allGraph, allNodes, attr="toolTip") <- paste(unlist(nodeData(allGraph, allNodes, attr="listMembership")), allNodes,unlist(nodeData(allGraph, allNodes, attr="Desc")), sep=" <br> ")
# only do this if we are looking at just the overlap between lists without considering gene overlap
if (graphT == "membership") {
nodeData(allGraph, allNodes[allNodes %in% lists], attr="shape") <- "TRAPEZOID"
}
returnData <- new("ccCompareResult", mainGraph=allGraph, mainTable=allTable, categoryName=categoryName(ccEnrichResult))
#returnData <- list(graphs=list(mainGraph=allGraph), mainTable=allTable, allAnnotation=allAnn)
return(returnData)
}
.getDesc <- function(sigIDs,catType){
if (catType == "KEGG"){
tmpDesc <- getAnnotation(sigIDs,"KEGG.db","PATHID2NAME",TRUE)
} else if (catType == "GO") {
tmpDesc <- getAnnotation(sigIDs,"GO.db", "GOTERM", FALSE)
tmpDesc <- sapply(tmpDesc,function(x) {
if(length(x) > 0){
Term(x)
} else {
NA
}
})
} else { tmpDesc <- vector("character", length(sigIDs))}
return(tmpDesc)
}
.moveTable <- function(dataFrame,oldIndx,newIndx){
nCol <- ncol(dataFrame)
allIndx <- seq(1,nCol,1)
nChng <- length(oldIndx)
for (iChng in 1:nChng){
# chop off from newIndx down
oldS <- allIndx[newIndx[iChng]:nCol]
oldS <- oldS[!(oldS == oldIndx[iChng])]
newS <- allIndx[1:newIndx[iChng]-1]
allIndx <- c(newS,oldIndx[iChng],oldS)
}
dataFrame <- dataFrame[,allIndx]
return(dataFrame)
}
createGraph2 <- function(nodeList,nodeGeneMap,nodeType){
# graph creation is based on:
# Merico D, Isserlin R, Stueker O, Emili A, Bader GD, 2010
# Enrichment Map: A Network-Based Method for Gene-Set Enrichment Visualization and Interpretation. PLoS ONE 5(11): e13984. doi:10.1371/journal.pone.0013984
useJ <- TRUE
if ((nodeType == 'GO')){
useJ <- FALSE
}
# stop code at the spot where errors may likely creep in.
if (length(nodeList) == 0){
warning("Created a graph with zero nodes and zero edges!", call.=F)
return(new("graphNEL", nodes=character(0), edgemode="directed"))
}
if (length(nodeList) == 1){
warning("Created a graph with one node and zero edges!", call.=F)
return(new("graphNEL", nodes=nodeList, edgemode="directed"))
}
nGenesNode <- sapply(nodeGeneMap,'length')
keepNodes <- (nGenesNode >= 10) & (nGenesNode <= 500)
nodeList <- nodeList[keepNodes]
nodeGeneMap <- nodeGeneMap[keepNodes]
nNodes <- length(nodeList)
graphDat <- new("graphNEL", nodes=nodeList, edgemode="directed") # this is because we will be visualizing in Cytoscape, and really, we don't actually need the dual information.
allComp <- expand.grid(seq(1,nNodes),seq(1,nNodes))
allComp <- allComp[(allComp[,2] > allComp[,1]),] # keep only where second is greater than first
allComp <- as.matrix(allComp)
# now go through allComp, using them as indices into the matrix
corAll <- sapply(seq(1,nrow(allComp)), function(x){
doComp <- allComp[x,]
n1 <- nodeGeneMap[[doComp[1]]]
n2 <- nodeGeneMap[[doComp[2]]]
if (useJ){
useC <- (length(intersect(n1,n2))) / (length(union(n1,n2)))
} else {
useC <- (length(intersect(n1,n2))) / (min(c(length(n1),length(n2))))
}
useC
})
# get rid of anything that was completely zero
notZero <- corAll != 0
allComp <- allComp[notZero,]
corAll <- corAll[notZero]
fromEdge <- nodeList[allComp[,1]]
toEdge <- nodeList[allComp[,2]]
graphDat <- addEdge(fromEdge, toEdge, graphDat, corAll)
}
createGraph <- function(nodeList){
nMain <- length(nodeList)
mainNodes <- names(nodeList)
nodeDat <- names(nodeList)
nodeDat <- c(nodeDat, unique(unlist(nodeList), recursive=TRUE, use.names=FALSE))
nNode <- length(nodeDat)
baseAM <- matrix(data=0, nrow=nNode, ncol=nNode)
rownames(baseAM) <- colnames(baseAM) <- nodeDat
for (iMain in 1:nMain){
nSub <- length(nodeList[[iMain]])
mainNam <- mainNodes[iMain]
for (iSub in 1:nSub){
subName <- nodeList[[iMain]][iSub]
baseAM[mainNam,subName] <- 1
baseAM[subName,mainNam] <- 1
}
}
graphDat <- new('graphAM', adjMat=baseAM)
graphDat
}
.compMem <- function(memList,ccOptions){
allItem <- unique(unlist(memList,use.names=FALSE))
allItem <- allItem[!(allItem %in% 'all')] # in case we have the GO term "all" in our list, we don't want it
nItem <- length(allItem)
allList <- names(memList)
matchList <- match(allList,listNames(ccOptions)) # want this so we grab the lists in the same order as was defined in ccOptions. They should be in the same order, but just in case
nList <- length(memList)
isInList <- matrix(data=NA, nrow=length(allItem), ncol=nList)
for (iList in 1:nList){
isInList[,iList] <- allItem %in% memList[[matchList[iList]]]
}
compIndx <- compareIndx(ccOptions)
nComp <- length(compIndx)
compVec <- vector('integer',nItem)
for (iComp in 1:nComp){
truVec <- vector('logical', nList)
truVec[compIndx[[iComp]]] <- TRUE
matchVec <- apply(isInList,1,function(x){truVec == x})
matchVec <- t(matchVec)
matchVec <- apply(matchVec,1,sum)
matchVec <- matchVec == nList
compVec[matchVec] <- iComp
}
names(compVec) <- allItem
return(compVec)
}
.annGenesComp <- function(allRes,ccOptions){
lists <- names(allRes)
nList <- length(lists)
geneLists <- vector('list',nList)
for (iList in 1:nList){
geneLists[[iList]] <- allRes[[iList]]$genes
}
names(geneLists) <- lists
geneCompVec <- .compMem(geneLists,ccOptions) # good to here
# now replace the annGenes list by a list that includes which of the comparisons the genes belong to
compNames <- compareNames(ccOptions)
geneCompName <- sapply(geneCompVec,function(x){compNames[x]})
names(geneCompName) <- names(geneCompVec)
nComp <- length(compNames)
newAnnGenes <- vector('list',0)
for (iList in 1:nList){
oldNames <- names(newAnnGenes)
currNames <- names(allRes[[iList]]$annGenes)
matchNames <- match(currNames, oldNames)
nCurr <- length(currNames)
for (iCurr in 1:nCurr){
currGenes <- allRes[[iList]]$annGenes[[iCurr]]
tmpGenes <- vector('list',nComp)
names(tmpGenes) <- compNames
if(is.na(matchNames[iCurr])){
for (iComp in 1:nComp){
posGenes <- names(geneCompVec[geneCompName == compNames[iComp]])
tmpGenes[[iComp]] <- intersect(posGenes,currGenes) # genes annotated to that term in this comparison
}
nAnn <- length(newAnnGenes)
newAnnGenes[[nAnn+1]] <- tmpGenes
names(newAnnGenes)[nAnn+1] <- currNames[iCurr]
} else {
oldGenes <- newAnnGenes[[matchNames[iCurr]]]
for (iComp in 1:nComp){
posGenes <- names(geneCompName[geneCompName == compNames[iComp]])
tmpGenes[[iComp]] <- unique(c(oldGenes[[iComp]],intersect(posGenes,currGenes)))
}
newAnnGenes[[matchNames[iCurr]]] <- tmpGenes
}
}
}
return(newAnnGenes)
}
.extractRes <- function(ccEnrichResult){
summary <- getGeneric("summary")
lists <- names(ccEnrichResult)
nList <- length(ccEnrichResult)
sigID <- vector('character',0)
allRes <- vector('list', nList)
allNodes <- vector('character',0)
for (iList in 1:nList){
tmpRes <- vector('list', 4)
tmpSum <- summary(ccEnrichResult[[iList]])
tmpRes[[1]] <- tmpSum$ID # just the significant IDs
tmpRes[[2]] <- summary(ccEnrichResult[[iList]], pvalue=1, pType='pval', minCount=0) # everything in the table
tmpRes[[3]] <- geneIdsByCategory(ccEnrichResult[[iList]]) # which genes from the list are annotated to each term
tmpRes[[4]] <- geneIds(ccEnrichResult[[iList]]) # the genes that were input to the enrichment calculation
tmpRes[[5]] <- annotation(ccEnrichResult[[iList]]) # what annotation was used to generate the data
names(tmpRes) <- c('sigIDs','allData','annGenes','genes','annotation')
allRes[[iList]] <- tmpRes
sigID <- c(sigID,tmpRes[[1]])
allNodes <- c(allNodes, tmpRes[[1]])
}
names(allRes) <- lists
allNodes <- unique(allNodes)
sigID <- unique(sigID)
tmpTable <- allRes[[1]]$allData
nCol <- ncol(tmpTable)
names(tmpTable)[2:nCol] <- paste(lists[1],names(tmpTable)[2:nCol],sep='.')
if (nrow(tmpTable) > 0){
tmpTable[lists[1]] <- TRUE # this needs better behavior when there is no results for that list
}
# what if we remove those that don't have any significant results first
allTable <- tmpTable
if (nList > 1){
for (iList in 2:nList){
tmpTable <- allRes[[iList]]$allData
nCol <- ncol(tmpTable)
names(tmpTable)[2:nCol] <- paste(lists[iList],names(tmpTable)[2:nCol],sep='.')
if (nrow(tmpTable) > 0) { tmpTable[lists[iList]] <- TRUE } # only put it in if there is more than one row, otherwise it will die
allTable <- merge(allTable, tmpTable, by.x="ID", by.y="ID", all=TRUE)
}
}
return(list(allRes=allRes,allNodes=allNodes,allTable=allTable,sigID=sigID))
}
# add attributes to the graph and add on the table data to the graph as well
.initGraphAtts <- function(allGraph,tableDat){
typeConv <- c('STRING','INTEGER','DOUBLE','STRING')
names(typeConv) <- c('character','integer','numeric','logical')
# Note that we add an attribute so that we are RCytoscape friendly for almost no extra work
nodeDataDefaults(allGraph, "shape") <- "ELLIPSE"
attr(nodeDataDefaults(allGraph, "shape"), "class") <- "STRING"
nodeDataDefaults(allGraph, "Desc") <- ""
attr(nodeDataDefaults(allGraph, "Desc"), "class") <- "STRING"
nodeDataDefaults(allGraph, "listMembership") <- ""
attr(nodeDataDefaults(allGraph, "listMembership"), "class") <- "STRING"
nodeDataDefaults(allGraph, "compIndx") <- ""
attr(nodeDataDefaults(allGraph, "compIndx"), "class") <- "STRING"
nodeDataDefaults(allGraph, "fillcolor") <- ""
attr(nodeDataDefaults(allGraph, "fillcolor"), "class") <- "STRING"
nodeDataDefaults(allGraph, "toolTip") <- ""
attr(nodeDataDefaults(allGraph, "toolTip"), "class") <- "STRING"
nodeDataDefaults(allGraph, "isSig") <- "FALSE"
attr(nodeDataDefaults(allGraph, "isSig"), "class") <- "STRING"
tmpDats <- names(edgeDataDefaults(allGraph))
if (!("weight" %in% tmpDats)){
edgeDataDefaults(allGraph,"weight") <- 1
}
attr(edgeDataDefaults(allGraph, "weight"), "class") <- "DOUBLE"
allNodes <- nodes(allGraph)
# rearrange the table to have the same ordering as the nodes in the graph
tableDat <- tableDat[match(allNodes,tableDat$ID,nomatch=0),]
allNodes <- allNodes[match(tableDat$ID,allNodes,nomatch=0)]
# now work through the columns of the table, excluding the ID column
excludeCols <- c('ID','Desc')
keepCols <- names(tableDat)[!(names(tableDat) %in% excludeCols)]
nKeep <- length(keepCols)
if (nKeep > 0){
for (iKeep in 1:nKeep){
tmpDat <- tableDat[,keepCols[iKeep]]
tmpDat[is.na(tmpDat)] <- -1
tmpDat[is.infinite(tmpDat)] <- -1
colClass <- class(tmpDat)
datName <- keepCols[iKeep]
if (colClass == 'logical'){
nodeDataDefaults(allGraph, datName) <- "FALSE"
attr(nodeDataDefaults(allGraph, datName), "class") <- "STRING"
nodeData(allGraph,allNodes,datName) <- as.character(tmpDat)
} else {
nodeDataDefaults(allGraph, datName) <- as(-1, colClass)
tmpType <- typeConv[colClass]; names(tmpType) <- NULL;
attr(nodeDataDefaults(allGraph, datName), "class") <- typeConv[colClass]
nodeData(allGraph,allNodes,datName) <- tmpDat
}
}
}
return(allGraph)
}
# This may be supported later, but not right now. Have to think about how to support multiple organisms
# May just refuse to do it on multiple organisms
# keggSub <- function(ccResults,allRes,allGraph,keggData){
# lists <- names(ccResults)
# nList <- length(lists)
#
# for (iList in 1:nList){
# # check if the organism is supported
#
#
#
# }
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.