Nothing
fry <- function(y,...) UseMethod("fry")
fry.default <- function(y,index=NULL,design=NULL,contrast=ncol(design),geneid=NULL,gene.weights=NULL,standardize="posterior.sd",sort="directional",...)
# Quick version of roast gene set test assuming equal variances between genes
# The up and down p-values are equivalent to those from roast with nrot=Inf
# in the special case of prior.df=Inf.
# Gordon Smyth and Goknur Giner
# Created 30 January 2015. Last modified 9 June 2020.
{
# Check gene.weights
if(!is.null(gene.weights)) {
if(length(gene.weights) != nrow(y)) stop("length of gene.weights should equal nrow(y)")
if(!is.numeric(gene.weights)) stop("gene.weights should be numeric")
}
# Partial matching of extra arguments
# array.weights and trend.var included for (undocumented) backward compatibility with code before 9 May 2016.
Dots <- list(...)
PossibleArgs <- c("array.weights","weights","block","correlation","trend.var","robust","winsor.tail.p")
if(!is.null(names(Dots))) {
i <- pmatch(names(Dots),PossibleArgs)
names(Dots) <- PossibleArgs[i]
}
# Defaults for extra arguments
if(is.null(Dots$trend.var)) {
Dots$trend <- FALSE
} else {
Dots$trend <- Dots$trend.var
Dots$trend.var <- NULL
}
if(is.null(Dots$robust)) Dots$robust <- FALSE
if(Dots$robust & is.null(Dots$winsor.tail.p)) Dots$winsor.tail.p <- c(0.05,0.1)
if(!is.null(Dots$block) & is.null(Dots$correlation)) stop("Intra-block correlation must be specified")
# Covariate for trended eBayes
covariate <- NULL
if(Dots$trend) covariate <- rowMeans(as.matrix(y))
# Compute effects matrix (with df.residual+1 columns)
Effects <- .lmEffects(y=y,design=design,contrast=contrast,
array.weights=Dots$array.weights,
weights=Dots$weights,
block=Dots$block,
correlation=Dots$correlation)
# Divide out genewise standard deviations
standardize <- match.arg(standardize, c("none","residual.sd","posterior.sd","p2"))
if(!standardize=="none") {
# Estimate genewise sds robustly
OK <- requireNamespace("statmod",quietly=TRUE)
if(!OK) stop("statmod package required but isn't installed (or can't be loaded)")
gq <- statmod::gauss.quad.prob(128,"uniform")
df.residual <- ncol(Effects)-1
Eu2max <- sum( (df.residual+1)*gq$nodes^df.residual*qchisq(gq$nodes,df=1)*gq$weights )
u2max <- apply(Effects^2,1,max)
s2.robust <- (rowSums(Effects^2)-u2max) / (df.residual+1-Eu2max)
# Empirical Bayes moderation method I: estimate hyperparameters from robust variances
if(standardize=="p2") {
sv <- squeezeVar(s2.robust, df=0.92*df.residual,
covariate=covariate,
robust=Dots$robust,
winsor.tail.p=Dots$winsor.tail.p)
s2.robust <- sv$var.post
}
# Empirical Bayes moderation method II: estimate hyperparameters from residual variances but apply squeezing to robust variances
if(standardize=="posterior.sd") {
s2 <- rowMeans(Effects[,-1,drop=FALSE]^2)
if(Dots$robust) {
fit <- fitFDistRobustly(s2, df1=df.residual, covariate=covariate, winsor.tail.p=Dots$winsor.tail.p)
df.prior <- fit$df2.shrunk
} else {
fit <- fitFDist(s2, df1=df.residual, covariate=covariate)
df.prior <- fit$df2
}
s2.robust <- .squeezeVar(s2.robust,df=0.92*df.residual,var.prior=fit$scale,df.prior=df.prior)
}
Effects <- Effects/sqrt(s2.robust)
}
# Check geneid (can be a vector of gene IDs or an annotation column name)
if(is.null(geneid)) {
geneid <- rownames(Effects)
} else {
geneid <- as.character(geneid)
if(length(geneid)==1)
geneid <- as.character(y$genes[,geneid])
else
if(length(geneid) != nrow(y)) stop("geneid vector should be of length nrow(y)")
}
.fryEffects(effects=Effects,index=index,geneid=geneid,gene.weights=gene.weights,sort=sort)
}
.fryEffects <- function(effects,index=NULL,geneid=rownames(effects),gene.weights=NULL,sort=TRUE)
# fry given the effects matrix
# Gordon Smyth and Goknur Giner
# Created 30 January 2015. Last modified 24 July 2019
{
G <- nrow(effects)
neffects <- ncol(effects)
df.residual <- neffects-1L
# Check index
if(is.null(index)) index <- list(set1=1L:G)
if(is.data.frame(index) || !is.list(index)) index <- list(set1=index)
nsets <- length(index)
if(nsets==0L) stop("index is empty")
if(is.null(names(index)))
names(index) <- paste0("set",formatC(1L:nsets,width=1L+floor(log10(nsets)),flag="0"))
else
if(anyDuplicated(names(index))) stop("Gene sets don't have unique names",call. =FALSE)
# Global statistics
NGenes <- rep_len(0L,length.out=nsets)
PValue.Mixed <- t.stat <- rep_len(0,length.out=nsets)
for (i in 1:nsets) {
iset <- index[[i]]
if(is.data.frame(iset)) {
if(ncol(iset)>1 && is.numeric(iset[,2])) {
iw <- iset[,2]
iset <- iset[,1]
if(is.factor(iset)) iset <- as.character(iset)
if(is.character(iset)) {
if(anyDuplicated(iset)) stop("Duplicate gene ids in set ",i)
j <- match(geneid,iset)
inset <- which(!is.na(j))
EffectsSet <- effects[inset,,drop=FALSE]
iw <- iw[j[inset]]
} else {
EffectsSet <- effects[iset,,drop=FALSE]
}
EffectsSet <- iw * EffectsSet
} else {
stop("index ",i," is a data.frame but doesn't contain gene weights")
}
} else {
if(is.factor(iset)) iset <- as.character(iset)
if(is.character(iset)) iset <- which(geneid %in% iset)
EffectsSet <- effects[iset,,drop=FALSE]
if(!is.null(gene.weights)) {
iw <- gene.weights[iset]
EffectsSet <- iw * EffectsSet
}
}
MeanEffectsSet <- colMeans(EffectsSet)
t.stat[i] <- MeanEffectsSet[1] / sqrt(mean(MeanEffectsSet[-1]^2))
NGenes[i] <- nrow(EffectsSet)
if(NGenes[i]>1) {
SVD <- svd(EffectsSet,nu=0)
A <- SVD$d^2
d1 <- length(A)
d <- d1-1L
beta.mean <- 1/d1
beta.var <- d/d1/d1/(d1/2+1)
Fobs <- (sum(EffectsSet[,1]^2)-A[d1]) / (A[1]-A[d1])
Frb.mean <- (sum(A) * beta.mean - A[d1]) / (A[1]-A[d1])
COV <- matrix(-beta.var/d,d1,d1)
diag(COV) <- beta.var
Frb.var <- (A %*% COV %*% A ) / (A[1]-A[d1])^2
alphaplusbeta <- Frb.mean*(1-Frb.mean)/Frb.var-1
alpha <- alphaplusbeta*Frb.mean
beta <- alphaplusbeta-alpha
PValue.Mixed[i] <- pbeta(Fobs,shape1=alpha,shape2=beta,lower.tail=FALSE)
}
}
Direction <- rep_len("Up",length.out=nsets)
Direction[t.stat<0] <- "Down"
PValue <- 2*pt(-abs(t.stat),df=df.residual)
PValue.Mixed[NGenes==1] <- PValue[NGenes==1]
# Add FDR
if(nsets>1) {
FDR <- p.adjust(PValue,method="BH")
FDR.Mixed <- p.adjust(PValue.Mixed,method="BH")
tab <- data.frame(NGenes=NGenes,Direction=Direction,PValue=PValue,FDR=FDR,PValue.Mixed=PValue.Mixed,FDR.Mixed=FDR.Mixed)
} else {
tab <- data.frame(NGenes=NGenes,Direction=Direction,PValue=PValue,PValue.Mixed=PValue.Mixed)
}
rownames(tab) <- names(index)
# Sort results
if(is.logical(sort)) if(sort) sort <- "directional" else sort <- "none"
sort <- match.arg(sort,c("directional","mixed","none"))
if(sort=="none") return(tab)
if(sort=="directional") {
o <- order(tab$PValue,-tab$NGenes,tab$PValue.Mixed)
} else {
o <- order(tab$PValue.Mixed,-tab$NGenes,tab$PValue)
}
tab[o,,drop=FALSE]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.