Nothing
## ---- include = FALSE---------------------------------------------------------
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
fig.align = 'left',
fig.height = 5,
fig.width = 10
)
## ----setup, message=FALSE, warning=FALSE--------------------------------------
library(maftools)
## -----------------------------------------------------------------------------
#path to TCGA LAML MAF file
laml.maf = system.file('extdata', 'tcga_laml.maf.gz', package = 'maftools')
#clinical information containing survival information and histology. This is optional
laml.clin = system.file('extdata', 'tcga_laml_annot.tsv', package = 'maftools')
laml = read.maf(maf = laml.maf,
clinicalData = laml.clin,
verbose = FALSE)
## -----------------------------------------------------------------------------
#By default the function plots top20 mutated genes
oncoplot(maf = laml, draw_titv = TRUE)
## -----------------------------------------------------------------------------
#One can use any colors, here in this example color palette from RColorBrewer package is used
vc_cols = RColorBrewer::brewer.pal(n = 8, name = 'Paired')
names(vc_cols) = c(
'Frame_Shift_Del',
'Missense_Mutation',
'Nonsense_Mutation',
'Multi_Hit',
'Frame_Shift_Ins',
'In_Frame_Ins',
'Splice_Site',
'In_Frame_Del'
)
print(vc_cols)
oncoplot(maf = laml, colors = vc_cols, top = 10)
## ---- fig.height=5,fig.width=10, fig.align='left'-----------------------------
#GISTIC results LAML
all.lesions =
system.file("extdata", "all_lesions.conf_99.txt", package = "maftools")
amp.genes =
system.file("extdata", "amp_genes.conf_99.txt", package = "maftools")
del.genes =
system.file("extdata", "del_genes.conf_99.txt", package = "maftools")
scores.gis =
system.file("extdata", "scores.gistic", package = "maftools")
#Read GISTIC results along with MAF
laml.plus.gistic = read.maf(
maf = laml.maf,
gisticAllLesionsFile = all.lesions,
gisticAmpGenesFile = amp.genes,
gisticDelGenesFile = del.genes,
gisticScoresFile = scores.gis,
isTCGA = TRUE,
verbose = FALSE,
clinicalData = laml.clin
)
## ---- fig.align='left',fig.height=5,fig.width=10, eval=T, fig.align='left'----
oncoplot(maf = laml.plus.gistic, top = 10)
## -----------------------------------------------------------------------------
set.seed(seed = 1024)
barcodes = as.character(getSampleSummary(x = laml)[,Tumor_Sample_Barcode])
#Random 20 samples
dummy.samples = sample(x = barcodes,
size = 20,
replace = FALSE)
#Genarate random CN status for above samples
cn.status = sample(
x = c('ShallowAmp', 'DeepDel', 'Del', 'Amp'),
size = length(dummy.samples),
replace = TRUE
)
custom.cn.data = data.frame(
Gene = "DNMT3A",
Sample_name = dummy.samples,
CN = cn.status,
stringsAsFactors = FALSE
)
head(custom.cn.data)
laml.plus.cn = read.maf(maf = laml.maf,
cnTable = custom.cn.data,
verbose = FALSE)
oncoplot(maf = laml.plus.cn, top = 5)
## ---- fig.height=7,fig.width=10, eval=T, fig.align='left'---------------------
#Selected AML driver genes
aml_genes = c("TP53", "WT1", "PHF6", "DNMT3A", "DNMT3B", "TET1", "TET2", "IDH1", "IDH2", "FLT3", "KIT", "KRAS", "NRAS", "RUNX1", "CEBPA", "ASXL1", "EZH2", "KDM6A")
#Variant allele frequcnies (Right bar plot)
aml_genes_vaf = subsetMaf(maf = laml, genes = aml_genes, fields = "i_TumorVAF_WU", mafObj = FALSE)[,mean(i_TumorVAF_WU, na.rm = TRUE), Hugo_Symbol]
colnames(aml_genes_vaf)[2] = "VAF"
head(aml_genes_vaf)
#MutSig results (Right bar plot)
laml.mutsig = system.file("extdata", "LAML_sig_genes.txt.gz", package = "maftools")
laml.mutsig = data.table::fread(input = laml.mutsig)[,.(gene, q)]
laml.mutsig[,q := -log10(q)] #transoform to log10
head(laml.mutsig)
oncoplot(
maf = laml,
genes = aml_genes,
leftBarData = aml_genes_vaf,
leftBarLims = c(0, 100),
rightBarData = laml.mutsig,
rightBarLims = c(0, 20)
)
## -----------------------------------------------------------------------------
getClinicalData(x = laml)
## -----------------------------------------------------------------------------
oncoplot(maf = laml, genes = aml_genes, clinicalFeatures = 'FAB_classification')
## -----------------------------------------------------------------------------
#Color coding for FAB classification
fabcolors = RColorBrewer::brewer.pal(n = 8,name = 'Spectral')
names(fabcolors) = c("M0", "M1", "M2", "M3", "M4", "M5", "M6", "M7")
fabcolors = list(FAB_classification = fabcolors)
print(fabcolors)
oncoplot(
maf = laml, genes = aml_genes,
clinicalFeatures = 'FAB_classification',
sortByAnnotation = TRUE,
annotationColor = fabcolors
)
## -----------------------------------------------------------------------------
oncoplot(maf = laml, genes = aml_genes,
additionalFeature = c("Tumor_Seq_Allele2", "C"))
## -----------------------------------------------------------------------------
getFields(x = laml)
## -----------------------------------------------------------------------------
oncoplot(maf = laml, pathways = "auto", gene_mar = 8, fontSize = 0.6)
## -----------------------------------------------------------------------------
pathways = data.frame(
Genes = c(
"TP53",
"WT1",
"PHF6",
"DNMT3A",
"DNMT3B",
"TET1",
"TET2",
"IDH1",
"IDH2",
"FLT3",
"KIT",
"KRAS",
"NRAS",
"RUNX1",
"CEBPA",
"ASXL1",
"EZH2",
"KDM6A"
),
Pathway = rep(c(
"TSG", "DNAm", "Signalling", "TFs", "ChromMod"
), c(3, 6, 4, 2, 3)),
stringsAsFactors = FALSE
)
head(pathways)
oncoplot(maf = laml, pathways = pathways, gene_mar = 8, fontSize = 0.6)
## ---- fig.height = 8, fig.width = 10------------------------------------------
oncoplot(
maf = laml.plus.gistic,
draw_titv = TRUE,
pathways = pathways,
clinicalFeatures = c('FAB_classification', 'Overall_Survival_Status'),
sortByAnnotation = TRUE,
additionalFeature = c("Tumor_Seq_Allele2", "C"),
leftBarData = aml_genes_vaf,
leftBarLims = c(0, 100),
rightBarData = laml.mutsig[,.(gene, q)],
)
## -----------------------------------------------------------------------------
sessionInfo()
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.