Description Usage Arguments Value Examples
View source: R/seuratFunctions.R
seuratFindClusters Computes the clusters from the input sce object and stores them back in sce object
1 2 3 4 5 6 7 8 9 10 | seuratFindClusters(
inSCE,
useAssay,
useReduction = c("pca", "ica"),
dims = 10,
algorithm = c("louvain", "multilevel", "SLM"),
groupSingletons = TRUE,
resolution = 0.8,
externalReduction = NULL
)
|
inSCE |
(sce) object from which clusters should be computed and stored in |
useAssay |
Assay containing scaled counts to use for clustering. |
useReduction |
Reduction method to use for computing clusters. One of "pca" or "ica". Default |
dims |
numeric value of how many components to use for computing clusters. Default |
algorithm |
selected algorithm to compute clusters. One of "louvain", "multilevel", or "SLM". Use |
groupSingletons |
boolean if singletons should be grouped together or not. Default |
resolution |
Set the resolution parameter to find larger (value above 1) or smaller (value below 1) number of communities. Default |
externalReduction |
Pass DimReduc object if PCA/ICA computed through other libraries. Default |
Updated sce object which now contains the computed clusters
1 2 3 4 5 6 7 8 9 | data(scExample, package = "singleCellTK")
## Not run:
sce <- seuratNormalizeData(sce, useAssay = "counts")
sce <- seuratFindHVG(sce, useAssay = "counts")
sce <- seuratScaleData(sce, useAssay = "counts")
sce <- seuratPCA(sce, useAssay = "counts")
sce <- seuratFindClusters(sce, useAssay = "counts")
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.