Nothing
# dimensionality reduction algorithms
library(singleCellTK)
context("Testing dimensionality reduction algorithms")
data(scExample, package = "singleCellTK")
sceDroplet <- sce
sce <- subsetSCECols(sce, colData = "type != 'EmptyDroplet'")
sampleVector <- c(rep("Sample1", 100), rep("Sample2", 95))
sceres <- getUMAP(inSCE = sce, useAssay = "counts", logNorm = TRUE, sample = sampleVector, nNeighbors = 10, reducedDimName = "UMAP",
nIterations = 20, alpha = 1, minDist = 0.01, pca = TRUE, initialDims = 20)
test_that(desc = "Testing getUMAP", {
expect_equal(names(reducedDims(sceres)), "UMAP")
expect_equal(nrow(reducedDim(sceres, "UMAP")), ncol(sce))
})
test_that(desc = "Testing plotSCEScatter functions", {
p1 <- plotSCEScatter(inSCE = sceres, legendTitle = NULL,
slot = "assays", annotation = "counts", feature = "ENSG00000251562",
reducedDimName = "UMAP", labelClusters = FALSE,
sample = sampleVector, combinePlot = "all")
expect_is(p1, c("gg","ggplot"))
p2 <- plotSCEDimReduceFeatures(inSCE = sceres, feature = "ENSG00000251562",
shape = NULL, reducedDimName = "UMAP",
useAssay = "counts", xlab = "UMAP1", ylab = "UMAP2",
sample = sampleVector, combinePlot = "all")
expect_is(p2, c("gg","ggplot"))
p3 <- plotSCEDimReduceColData(inSCE = sceres, colorBy = "type",
shape = NULL, conditionClass = "factor",
reducedDimName = "UMAP",
xlab = "UMAP1", ylab = "UMAP2", labelClusters = TRUE,
sample = sampleVector, combinePlot = "all")
expect_is(p3, c("gg","ggplot"))
})
test_that(desc = "Testing plotSCEViolin functions", {
p1 <- plotSCEViolin(inSCE = sceres, slot = "assays",
annotation = "counts", feature = "ENSG00000251562",
groupBy = "type", sample = sampleVector, combinePlot = "all")
expect_is(p1, c("gg","ggplot"))
p2 <- plotSCEViolinAssayData(inSCE = sceres,
feature = "ENSG00000251562", groupBy = "type",
sample = sampleVector,combinePlot = "all")
expect_is(p2, c("gg","ggplot"))
p3 <- plotSCEViolinColData(inSCE = sceres,
coldata = "type", groupBy = "sample",
sample = sampleVector)
expect_is(p3, "list")
})
sceres <- sceres[, colData(sceres)$type != 'EmptyDroplet']
sceres <- runCellQC(sceres, algorithms = c("QCMetrics", "cxds", "bcds", "cxds_bcds_hybrid",
"doubletFinder", "decontX"))
sceres <- runDoubletCells(sceres)
context("Testing QC functions")
test_that("Testing scds",{
sce <- runCxdsBcdsHybrid(sce, estNdbl = TRUE)
expect_equal(class(colData(sceres)$scds_hybrid_score), 'numeric')
expect_equal(class(colData(sceres)$scds_hybrid_call), 'logical')
})
test_that(desc = "Testing DoubletFinder", {
expect_equal(length(colData(sceres)$doubletFinder_doublet_score_resolution_1.5),ncol(sce))
expect_equal(class(colData(sceres)$doubletFinder_doublet_score_resolution_1.5), "numeric")
})
test_that(desc = "Testing runDoubletCells", {
expect_equal(length(colData(sceres)$scran_doubletCells_score),ncol(sce))
expect_equal(class(colData(sceres)$scran_doubletCells_score), "numeric")
})
sceDroplet <- runDropletQC(sceDroplet)
test_that("Testing emptydrops",{
expect_equal(class(colData(sceDroplet)$dropletUtils_emptyDrops_total), 'integer')
expect_equal(class(colData(sceDroplet)$dropletUtils_emptyDrops_logprob), 'numeric')
expect_equal(class(colData(sceDroplet)$dropletUtils_emptyDrops_pvalue), 'numeric')
expect_equal(class(colData(sceDroplet)$dropletUtils_emptyDrops_limited), 'logical')
expect_equal(class(colData(sceDroplet)$dropletUtils_emptyDrops_fdr), 'numeric')
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.