R/confirm.R

Defines functions print_confirm confirm

Documented in confirm

#' GGM: Confirmatory Hypothesis Testing
#'
#' @description Confirmatory hypothesis testing in GGMs. Hypotheses are expressed as equality
#' and/or ineqaulity contraints on the partial correlations of interest. Here the focus is \emph{not}
#' on determining the graph (see \code{\link{explore}}) but testing specific hypotheses related to
#' the conditional (in)dependence structure. These methods were introduced in
#' \insertCite{Williams2019_bf;textual}{BGGM}.
#'
#' @param Y  Matrix (or data frame) of dimensions \emph{n} (observations) by  \emph{p} (variables).
#'
#' @param hypothesis Character string. The hypothesis (or hypotheses) to be tested. See details.
#'
#' @param prior_sd Numeric. Scale of the prior distribution, approximately the standard deviation
#'                 of a beta distribution (defaults to 0.5).
#'
#' @param formula An object of class \code{\link[stats]{formula}}. This allows for including
#' control variables in the model (e.g.,, \code{~ gender * education}).
#'
#' @param type Character string. Which type of data for \strong{Y} ? The options include \code{continuous},
#' \code{binary}, \code{ordinal}, or \code{mixed}. See the note for further details.
#'
#' @param mixed_type Numeric vector of length \emph{p}. An indicator for which varibles should be treated as ranks.
#' (1 for rank and 0 to assume normality). The default is currently (dev version) to treat all integer variables
#' as ranks when \code{type = "mixed"} and \code{NULL} otherwise. See note for further details.
#'
#' @param iter  Number of iterations (posterior samples; defaults to 25,000).
#'
#' @param impute Logicial. Should the missing values (\code{NA})
#'               be imputed during model fitting (defaults to \code{TRUE}) ?
#'
#' @param progress Logical. Should a progress bar be included (defaults to \code{TRUE}) ?
#'
#' @param seed An integer for the random seed.
#'
#' @param ... Currently ignored.
#'
#' @references
#' \insertAllCited{}
#'
#' @return The returned object of class \code{confirm} contains a lot of information that
#'         is used for printing and plotting the results. For users of \strong{BGGM}, the following
#'         are the useful objects:
#'
#' \itemize{
#'
#' \item \code{out_hyp_prob} Posterior hypothesis probabilities.
#'
#' \item \code{info} An object of class \code{BF} from the R package \strong{BFpack}.
#'
#' }
#'
#' @importFrom MASS ginv
#' @importFrom BFpack BF
#' @importFrom stats cov rbeta
#'
#' @details
#' The hypotheses can be written either with the respective column names or numbers.
#' For example, \code{1--2} denotes the relation between the variables in column 1 and 2.
#' Note that these must correspond to the upper triangular elements of the correlation
#' matrix. This is accomplished by ensuring that the first number is smaller than the second number.
#' This also applies when using column names (i.e,, in reference to the column number).
#'
#' \strong{One Hypothesis}:
#'
#' To test whether some relations are larger than others, while others
#'        are expected to be equal, this can be writting as
#'
#'\itemize{
#' \item \code{hyp <-  c(1--2 > 1--3  = 1--4 > 0)},
#'}
#'
#' where there is an addition additional contraint that all effects are expected to be positive.
#' This is then compared to the complement.
#'
#' \strong{More Than One Hypothesis}:
#'
#' The above hypothesis can also be compared to, say, a null model by using ";"
#' to seperate the hypotheses, for example,
#'
#' \itemize{
#'
#' \item
#'
#' \code{hyp <-  c(1--2 > 1--3  = 1--4 > 0; 1--2 = 1--3  = 1--4 = 0)}.
#'
#'
#' }
#'
#' Any number of hypotheses can be compared this way.
#'
#' \strong{Using "&"}
#'
#'  It is also possible to include \code{&}. This allows for testing one constraint \bold{and}
#'  another contraint as one hypothesis.
#'
#' \itemize{
#'
#' \item \code{hyp <- c("A1--A2 > A1--A2 & A1--A3 = A1--A3")}
#'
#' }
#'
#' Of course, it is then possible to include additional hypotheses by separating them with ";".
#' Note also that the column names were used in this example (e.g., \code{A1--A2} is the relation
#' between those nodes).
#'
#' \strong{Testing Sums}
#'
#' It might also be interesting to test the sum of partial correlations. For example, that the
#' sum of specific relations is larger than the sum of other relations. This can be written as
#'
#' \itemize{
#'
#' \item \code{hyp <- c("A1--A2 + A1--A3 > A1--A4 + A1--A5;
#'                       A1--A2 + A1--A3 = A1--A4 + A1--A5")}
#'
#' }
#'
#' \strong{Potential Delays}:
#'
#' There is a chance for a potentially long delay from the time the progress bar finishes
#' to when the function is done running. This occurs when the hypotheses require further
#' sampling to be tested, for example, when grouping relations
#' \code{c("(A1--A2, A1--A3) > (A1--A4, A1--A5)"}. This is not an error.
#'
#'
#' \strong{Controlling for Variables}:
#'
#' When controlling for variables, it is assumed that \code{Y} includes \emph{only}
#' the nodes in the GGM and the control variables. Internally, \code{only} the predictors
#' that are included in \code{formula} are removed from \code{Y}. This is not behavior of, say,
#' \code{\link{lm}}, but was adopted to ensure  users do not have to write out each variable that
#' should be included in the GGM. An example is provided below.
#'
#' \strong{Mixed Type}:
#'
#'  The term "mixed" is somewhat of a misnomer, because the method can be used for data including \emph{only}
#'  continuous or \emph{only} discrete variables \insertCite{hoff2007extending}{BGGM}. This is based on the
#'  ranked likelihood which requires sampling the ranks for each variable (i.e., the data is not merely
#'  transformed to ranks). This is computationally expensive when there are many levels. For example,
#'  with continuous data, there are as many ranks as data points!
#'
#'  The option \code{mixed_type} allows the user to determine  which variable should be treated as ranks
#'  and the "emprical" distribution is used otherwise. This is accomplished by specifying an indicator
#'  vector of length \emph{p}. A one indicates to use the ranks, whereas a zero indicates to "ignore"
#'  that variable. By default all integer variables are handled as ranks.
#'
#' \strong{Dealing with Errors}:
#'
#' An error is most likely to arise when \code{type = "ordinal"}. The are two common errors (although still rare):
#'
#' \itemize{
#'
#' \item The first is due to sampling the thresholds, especially when the data is heavily skewed.
#'       This can result in an ill-defined matrix. If this occurs, we recommend to first try
#'       decreasing \code{prior_sd} (i.e., a more informative prior). If that does not work, then
#'       change the data type to \code{type = mixed} which then estimates a copula GGM
#'       (this method can be used for data containing \strong{only} ordinal variable). This should
#'       work without a problem.
#'
#' \item  The second is due to how the ordinal data are categorized. For example, if the error states
#'        that the index is out of bounds, this indicates that the first category is a zero. This is not allowed, as
#'        the first category must be one. This is addressed by adding one (e.g., \code{Y + 1}) to the data matrix.
#'
#' }
#'
#' @note
#'
#' \strong{"Default" Prior}:
#'
#'  In Bayesian statistics, a default Bayes factor needs to have several properties. I refer
#'  interested users to \insertCite{@section 2.2 in @dablander2020default;textual}{BGGM}. In
#'  \insertCite{Williams2019_bf;textual}{BGGM}, some of these propteries were investigated (e.g.,
#'  model selection consistency). That said, we would not consider this a "default" or "automatic"
#'  Bayes factor and thus we encourage users to perform sensitivity analyses by varying the scale of the prior
#'  distribution.
#'
#'  Furthermore, it is important to note there is no "correct" prior and, also, there is no need
#'  to entertain the possibility of a "true" model. Rather, the Bayes factor can be interpreted as
#'  which hypothesis best (relative to each other) predicts the observed data
#'  \insertCite{@Section 3.2 in @Kass1995}{BGGM}.
#'
#' \strong{Interpretation of Conditional (In)dependence Models for Latent Data}:
#'
#'  See \code{\link{BGGM-package}} for details about interpreting GGMs based on latent data
#' (i.e, all data types besides \code{"continuous"})
#'
#'
#' @examples
#' \donttest{
#' # note: iter = 250 for demonstrative purposes
#'
#' ##########################
#' ### example 1: cheating ##
#' ##########################
#' # Here a true hypothesis is tested,
#' # which shows the method works nicely
#' # (peeked at partials beforehand)
#'
#' # data
#' Y <- BGGM::bfi[,1:10]
#'
#' hypothesis <- c("A1--A2 < A1--A3 < A1--A4 = A1--A5")
#'
#' # test cheat
#' test_cheat <-  confirm(Y = Y,
#'                        type = "continuous",
#'                        hypothesis  = hypothesis,
#'                        iter = 250,
#'                        progress = FALSE)
#'
#' # print (probabilty of nearly 1 !)
#' test_cheat
#' }
#'@export
confirm <- function(Y, hypothesis,
                    prior_sd = 0.5,
                    formula = NULL,
                    type = "continuous",
                    mixed_type = NULL,
                    iter = 25000,
                    progress = TRUE,
                    impute = TRUE,
                    seed = NULL, ...){


  # temporary warning until missing data is fully implemented
  if(type != "continuous"){
    warning(paste0("imputation during model fitting is\n",
                   "currently only implemented for 'continuous' data."))
  }


  set.seed(seed)
  ## Random seed unless user provided
  if(!is.null(seed) ) {
    set.seed(seed)
  }

  priorprob <- 1

  # hyperparameter
  delta <- delta_solve(prior_sd)

  p <- ncol(Y)

  I_p <- diag(p)

  # number of edges
  pcors <- p*(p-1)*0.5


  if(isTRUE(progress)){
    message("BGGM: Posterior Sampling")
  }

  # continuous
  if(type == "continuous"){

    # no control
    if(is.null(formula)){

      # nodes
      p <- ncol(Y)

      if(!impute){

        # na omit
        Y <- as.matrix(na.omit(Y))

        Y_miss <- Y

      } else {

        Y_miss <- ifelse(is.na(Y), 1, 0)

        if(sum(Y_miss) == 0){
          impute <- FALSE
        }

        # impute means
        for(i in 1:p){
          Y[which(is.na(Y[,i])),i] <- mean(na.omit(Y[,i]))
        }

      }

      # scale Y
      Y <- scale(Y, scale = F)

      n <- nrow(Y)

      start <- solve(cov(Y))

      # posterior sample
      post_samp <- .Call(
        '_BGGM_Theta_continuous',
        PACKAGE = 'BGGM',
        Y = Y,
        iter = iter + 50,
        delta = delta,
        epsilon = 0.01,
        prior_only = 0,
        explore = 1,
        start = start,
        progress = progress,
        impute = impute,
        Y_miss = Y_miss
      )

      # control for variables
    } else {

      control_info <- remove_predictors_helper(list(as.data.frame(Y)),
                                               formula = formula)

      # data
      Y <- as.matrix(scale(control_info$Y_groups[[1]], scale = F))

      # nodes
      p <- ncol(Y)

      # observations
      n <- nrow(Y)

      # model matrix
      X <- as.matrix(control_info$model_matrices[[1]])

      start <- solve(cov(Y))

      # posterior sample
      post_samp <- .Call(
        "_BGGM_mv_continuous",
        Y = Y,
        X = X,
        delta = delta,
        epsilon = 0.1,
        iter = iter + 50,
        start = start,
        progress = progress
      )

    } # end control

    # binary
    } else if (type == "binary"){


      # intercept only
      if (is.null(formula)) {

        # data
        Y <- as.matrix(na.omit(Y))

        # obervations
        n <- nrow(Y)

        # nodes
        p <- ncol(Y)

        X <- matrix(1, n, 1)

        start <- solve(cov(Y))

      } else {

        control_info <- remove_predictors_helper(list(as.data.frame(Y)),
                                                 formula = formula)

        # data
        Y <-  as.matrix(control_info$Y_groups[[1]])

        # observations
        n <- nrow(Y)

        # nodes
        p <- ncol(Y)

        # model matrix
        X <- as.matrix(control_info$model_matrices[[1]])

        start <- solve(cov(Y))

      }

  # posterior sample
    post_samp <-  .Call(
      "_BGGM_mv_binary",
      Y = Y,
      X = X,
      delta = delta,
      epsilon = 0.01,
      iter = iter + 50,
      beta_prior = 0.0001,
      cutpoints = c(-Inf, 0, Inf),
      start = start,
      progress = progress
    )

    # ordinal
  } else if(type == "ordinal"){

    # intercept only
    if(is.null(formula)){

      # data
      Y <- as.matrix(na.omit(Y))

      # obervations
      n <- nrow(Y)

      # nodes
      p <- ncol(Y)

      # intercept only
      X <- matrix(1, n, 1)

      # start
      start <- solve(cov(Y))

    } else {

      control_info <- remove_predictors_helper(list(as.data.frame(Y)),
                                               formula = formula)

      # data
      Y <-  as.matrix(control_info$Y_groups[[1]])

      # observations
      n <- nrow(Y)

      # nodes
      p <- ncol(Y)

      # model matrix
      X <- as.matrix(control_info$model_matrices[[1]])

      # start
      start <- solve(cov(Y))

      }

    # categories
    K <- max(apply(Y, 2, function(x) { length(unique(x))   } ))

    # call c ++
    post_samp <- .Call(
      "_BGGM_mv_ordinal_albert",
      Y = Y,
      X = X,
      iter = iter + 50,
      delta = delta,
      epsilon = 0.01,
      K = K,
      start = start,
      progress = progress
    )

  } else if(type == "mixed"){

    # no control variables allowed
    if (!is.null(formula)) {

      warning("formula ignored for mixed data at this time")

      control_info <- remove_predictors_helper(list(as.data.frame(Y)),
                                               formula = formula)

      # data
      Y <-  as.matrix(control_info$Y_groups[[1]])

      formula <- NULL

      # start
      start <- solve(cov(Y))

    } else {

      Y <- as.matrix(na.omit(Y))

      # start
      start <- solve(cov(Y))
    }

    # observations
    n <- nrow(Y)

    # nodes
    p <- ncol(Y)

    # default for ranks
    if(is.null(mixed_type)) {

      idx = colMeans(round(Y) == Y)
      idx = ifelse(idx == 1, 1, 0)

      # user defined
    } else {

      idx = mixed_type
    }

    # rank following hoff (2008)
    rank_vars <- rank_helper(Y)

    post_samp <- .Call(
      "_BGGM_copula",
      z0_start = rank_vars$z0_start,
      levels = rank_vars$levels,
      K = rank_vars$K,
      Sigma_start = cov(Y),
      iter = iter + 50,
      delta = delta,
      epsilon = 0.01,
      idx = idx,
      progress = progress
    )

  } else {

    stop("'type' not supported: must be continuous, binary, ordinal, or mixed.")
  }


  if(isTRUE(progress)){

    message(paste0("BGGM: Prior Sampling "))

  }

  # sample prior
  prior_samp <- .Call(
    '_BGGM_sample_prior',
    PACKAGE = 'BGGM',
    Y = Y,
    iter = 25000,
    delta = delta,
    epsilon = 0.01,
    prior_only = 1,
    explore = 0,
    progress = progress
  )$fisher_z

  if(isTRUE(progress)){

    message("BGGM: Testing Hypotheses")
    }

  col_names <- numbers2words(1:p)

  mat_name <- sapply(col_names, function(x) paste(col_names,x, sep = ""))[upper.tri(I_p)]

  posterior_samples <- matrix(post_samp$fisher_z[, , 51:(iter+50)][upper.tri(I_p)],
                              iter, pcors,
                              byrow = TRUE)

  prior_samples <- matrix(prior_samp[,,][upper.tri(I_p)],
                          25000,
                          pcors,
                          byrow = TRUE)

  colnames(posterior_samples) <- mat_name

  colnames(prior_samples) <- mat_name

  prior_mu <- colMeans(prior_samples)

  prior_cov <- cov(prior_samples)

  post_mu <- colMeans(posterior_samples)

  post_cov <- cov(posterior_samples)

  BFprior <- BF(prior_mu,
                Sigma = prior_cov,
                hypothesis = convert_hyps(hypothesis, Y = Y),
                n = 1)

  BFpost <- BF(post_mu,
               Sigma = post_cov,
               hypothesis = convert_hyps(hypothesis, Y = Y),
               n = 1)


  # number of hypotheses
  n_hyps <- nrow(BFpost$BFtable_confirmatory)

  # BF against unconstrained
  BF_tu <- NA

  for(i in seq_len(n_hyps)){

    # BF tu
    BF_tu[i] <- prod(BFpost$BFtable_confirmatory[i,3:4] / BFprior$BFtable_confirmatory[i,3:4])

    }

  # posterior hyp probs
  out_hyp_prob <- BF_tu*priorprob / sum(BF_tu*priorprob)

  # BF matrix
  BF_matrix <- matrix(rep(BF_tu, length(BF_tu)),
                      ncol = length(BF_tu),
                      byrow = TRUE)

  BF_matrix[is.nan(BF_matrix)] <- 0
  diag(BF_matrix) <- 1

  BF_matrix <- t(BF_matrix) / (BF_matrix)

  row.names(BF_matrix) <- row.names( BFpost$BFtable_confirmatory)
  colnames(BF_matrix) <- row.names( BFpost$BFtable_confirmatory)

  if(isTRUE(progress)){
    message("BGGM: Finished")
  }

  # removed per CRAN (8/12/21)
  #.Random.seed <<- old

  returned_object <- list(BF_matrix = BF_matrix,
                          out_hyp_prob = out_hyp_prob,
                          info = BFpost,
                          dat = Y,
                          type = type,
                          call = match.call(),
                          hypothesis = hypothesis,
                          iter = iter, p = p,
                          delta = delta,
                          ppd_mean = post_samp$ppd_mean)

  class(returned_object) <- c("BGGM", "confirm")
  returned_object
}


print_confirm <- function(x, ...){

  cat("BGGM: Bayesian Gaussian Graphical Models \n")

  cat("Type:",  x$type ,  "\n")

  cat("--- \n")

  cat("Posterior Samples:", x$iter, "\n")

  cat("Observations (n):", nrow(x$dat), "\n")

  cat("Variables (p):", x$p, "\n")

  cat("Delta:", x$delta, "\n")

  cat("--- \n")

  cat("Call:\n")

  print(x$call)

  cat("--- \n")

  cat("Hypotheses: \n\n")

  hyps <- strsplit(x$hypothesis, ";")

  n_hyps <- length(hyps[[1]])

  x$info$hypotheses[1:n_hyps] <- hyps[[1]]

  n_hyps <- length(x$info$hypotheses)

  for (h in seq_len(n_hyps)) {
    cat(paste0("H", h,  ": ", gsub(" ", "",  gsub('[\n]', '', x$info$hypotheses[h])), "\n"))

  }
  cat("--- \n")

  cat("Posterior prob: \n\n")

  for(h in seq_len(n_hyps)){
    cat(paste0("p(H",h,"|data) = ", round(x$out_hyp_prob[h], 3 )  ))
    cat("\n")
  }

  cat("--- \n")

  cat('Bayes factor matrix: \n')

  print(round(x$BF_matrix, 3))

  cat("--- \n")

  cat("note: equal hypothesis prior probabilities")
}

Try the BGGM package in your browser

Any scripts or data that you put into this service are public.

BGGM documentation built on Sept. 11, 2024, 5:19 p.m.