Nothing
#### ### ##
# METHODS #
#### ### ##
#' MB.sPLS-DRCOX
#' @description
#' The MB.sPLS-DRCOX function conducts a multi-block sparse partial least squares deviant residuals
#' Cox (MB.sPLS-DRCOX) using a dynamic variable selection approach. This analysis is particularly
#' suited for high-dimensional datasets where the goal is to identify the relationship between
#' explanatory variables and survival outcomes. The function outputs a model of class "Coxmos" with
#' an attribute labeled "MB.sPLS-DRCOX".
#'
#' @details
#' The MB.sPLS-DRCOX methodology is designed to handle multi-block datasets, where each block
#' represents a set of related variables. By employing a sparse partial least squares approach,
#' the function efficiently selects relevant variables from each block, ensuring that the final
#' model is both interpretable and predictive. The Cox proportional hazards model is then applied to
#' the selected variables to assess their association with survival outcomes.
#'
#' The function offers flexibility in terms of parameter tuning. For instance, users can specify the
#' number of latent components to compute, the range of variables to consider for optimal selection,
#' and the evaluation metric (either AUC or c-index). Additionally, data preprocessing options are
#' available, such as centering and scaling of the explanatory variables, and removal of variables
#' with near-zero or zero variance.
#'
#' @param X List of numeric matrices or data.frames. Explanatory variables. Qualitative variables must be
#' transform into binary variables.
#' @param Y Numeric matrix or data.frame. Response variables. Object must have two columns named as
#' "time" and "event". For event column, accepted values are: 0/1 or FALSE/TRUE for censored and
#' event observations.
#' @param n.comp Numeric. Number of latent components to compute for the (s)PLS model (default: 10).
#' @param vector Numeric vector. Used for computing best number of variables. As many values as
#' components have to be provided. If vector = NULL, an automatic detection is perform (default: NULL). If
#' vector is a list, must be named as the names of X param followed by the number of variables to select.
#' @param design Numeric matrix. Matrix of size (number of blocks in X) x (number of blocks in X) with
#' values between 0 and 1. Each value indicates the strength of the relationship to be modeled between
#' two blocks; a value of 0 indicates no relationship, 1 is the maximum value. If NULL, auto-design is computed (default: NULL).
#' @param MIN_NVAR Numeric. Minimum range size for computing cut points to select the best number of
#' variables to use (default: 10).
#' @param MAX_NVAR Numeric. Maximum range size for computing cut points to select the best number of
#' variables to use (default: 1000).
#' @param n.cut_points Numeric. Number of cut points for searching the optimal number of variables.
#' If only two cut points are selected, minimum and maximum size are used. For MB approaches as many
#' as n.cut_points^n.blocks models will be computed as minimum (default: 5).
#' @param EVAL_METHOD Character. The selected metric will be use to compute the best
#' number of variables. Must be one of the following: "AUC", "IBS" or "C.Index" (default: "AUC").
#' @param x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default: TRUE).
#' @param x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
#' @param remove_near_zero_variance Logical. If remove_near_zero_variance = TRUE, near zero variance
#' variables will be removed (default: TRUE).
#' @param remove_zero_variance Logical. If remove_zero_variance = TRUE, zero variance variables will
#' be removed (default: TRUE).
#' @param toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero variance
#' filtering (default: NULL).
#' @param remove_non_significant Logical. If remove_non_significant = TRUE, non-significant
#' variables/components in final cox model will be removed until all variables are significant by
#' forward selection (default: FALSE).
#' @param alpha Numeric. Numerical values are regarded as significant if they fall below the
#' threshold (default: 0.05).
#' @param MIN_AUC_INCREASE Numeric. Minimum improvement between different cross validation models to
#' continue evaluating higher values in the multiple tested parameters. If it is not reached for next
#' 'MIN_COMP_TO_CHECK' models and the minimum 'MIN_AUC' value is reached, the evaluation stops
#' (default: 0.01).
#' @param pred.method Character. AUC evaluation algorithm method for evaluate the model performance.
#' Must be one of the following: "risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C",
#' "smoothROCtime_I" (default: "cenROC").
#' @param max.iter Numeric. Maximum number of iterations for PLS convergence (default: 200).
#' @param times Numeric vector. Time points where the AUC will be evaluated. If NULL, a maximum of
#' 'max_time_points' points will be selected equally distributed (default: NULL).
#' @param max_time_points Numeric. Maximum number of time points to use for evaluating the model
#' (default: 15).
#' @param MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for the final
#' cox model. Used to restrict the number of variables/components can be computed in final cox models.
#' If the minimum is not meet, the model cannot be computed (default: 5).
#' @param returnData Logical. Return original and normalized X and Y matrices (default: TRUE).
#' @param verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).
#'
#' @return Instance of class "Coxmos" and model "MB.sPLS-DRCOX". The class contains the following
#' elements:
#' \code{X}: List of normalized X data information.
#' \itemize{
#' \item \code{(data)}: normalized X matrix
#' \item \code{(weightings)}: PLS weights
#' \item \code{(weightings_norm)}: PLS normalize weights
#' \item \code{(W.star)}: PLS W* vector
#' \item \code{(scores)}: PLS scores/variates
#' \item \code{(E)}: error matrices
#' \item \code{(x.mean)}: mean values for X matrix
#' \item \code{(x.sd)}: standard deviation for X matrix
#' }
#' \code{Y}: List of normalized Y data information.
#' \itemize{
#' \item \code{(deviance_residuals)}: deviance residual vector used as Y matrix in the sPLS.
#' \item \code{(dr.mean)}: mean values for deviance residuals Y matrix
#' \item \code{(dr.sd)}: standard deviation for deviance residuals Y matrix'
#' \item \code{(data)}: normalized X matrix
#' \item \code{(y.mean)}: mean values for Y matrix
#' \item \code{(y.sd)}: standard deviation for Y matrix'
#' }
#' \code{survival_model}: List of survival model information.
#' \itemize{
#' \item \code{fit}: coxph object.
#' \item \code{AIC}: AIC of cox model.
#' \item \code{BIC}: BIC of cox model.
#' \item \code{lp}: linear predictors for train data.
#' \item \code{coef}: Coefficients for cox model.
#' \item \code{YChapeau}: Y Chapeau residuals.
#' \item \code{Yresidus}: Y residuals.
#' }
#'
#' \code{mb.model}: List of sPLS models computed for each block.
#'
#' \code{n.comp}: Number of components selected.
#'
#' \code{n.varX}: Number of variables selected for each block.
#'
#' \code{call}: call function
#'
#' \code{X_input}: X input matrix
#'
#' \code{Y_input}: Y input matrix
#'
#' \code{B.hat}: PLS beta matrix
#'
#' \code{R2}: sPLS acumulate R2
#'
#' \code{SCR}: PLS SCR
#'
#' \code{SCT}: PLS SCT
#'
#' \code{nzv}: Variables removed by remove_near_zero_variance or remove_zero_variance.
#'
#' \code{nz_coeffvar}: Variables removed by coefficient variation near zero.
#'
#' \code{time}: time consumed for running the cox analysis.
#'
#' @author Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es
#'
#' @references
#' \insertRef{MixOmics}{Coxmos}
#'
#' @export
#'
#' @examples
#' \donttest{
#' data("X_multiomic")
#' data("Y_multiomic")
#' X <- X_multiomic
#' X$mirna <- X$mirna[,1:50]
#' X$proteomic <- X$proteomic[,1:50]
#' Y <- Y_multiomic
#' mb.splsdrcox(X, Y, n.comp = 2, vector = NULL, x.center = TRUE, x.scale = TRUE)
#' }
mb.splsdrcox <- function (X, Y,
n.comp = 4, vector = NULL, design = NULL,
MIN_NVAR = 10, MAX_NVAR = NULL, n.cut_points = 5, EVAL_METHOD = "AUC",
x.center = TRUE, x.scale = FALSE,
remove_near_zero_variance = TRUE, remove_zero_variance = TRUE, toKeep.zv = NULL,
remove_non_significant = TRUE, alpha = 0.05,
MIN_AUC_INCREASE = 0.01,
pred.method = "cenROC", max.iter = 200,
times = NULL, max_time_points = 15,
MIN_EPV = 5, returnData = TRUE, verbose = FALSE){
# tol Numeric. Tolerance for solving: solve(t(P) %*% W) (default: 1e-15).
tol = 1e-10
t1 <- Sys.time()
y.center = y.scale = FALSE
FREQ_CUT <- 95/5
#### Check values classes and ranges
params_with_limits <- list("alpha" = alpha, "MIN_AUC_INCREASE" = MIN_AUC_INCREASE)
check_min0_max1_variables(params_with_limits)
numeric_params <- list("n.comp" = n.comp, "MIN_NVAR" = MIN_NVAR,
"n.cut_points" = n.cut_points,
"max_time_points" = max_time_points,
"MIN_EPV" = MIN_EPV, "tol" = tol, "max.iter" = max.iter)
if(!is.null(MAX_NVAR)){
numeric_params$MAX_NVAR <- MAX_NVAR
}
check_class(numeric_params, class = "numeric")
logical_params <- list("x.center" = unlist(x.center), "x.scale" = unlist(x.scale),
#"y.center" = y.center, "y.scale" = y.scale,
"remove_near_zero_variance" = remove_near_zero_variance,
"remove_zero_variance" = remove_zero_variance,
"remove_non_significant" = remove_non_significant, "returnData" = returnData,
"verbose" = verbose)
check_class(logical_params, class = "logical")
character_params <- list("EVAL_METHOD" = EVAL_METHOD, "pred.method" = pred.method)
check_class(character_params, class = "character")
#### Check rownames
lst_check <- checkXY.rownames.mb(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
#### Check colnames
X <- checkColnamesIllegalChars.mb(X)
#### REQUIREMENTS
checkX.colnames.mb(X)
checkY.colnames(Y)
lst_check <- checkXY.mb.class(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
#### Original data
X_original <- X
Y_original <- Y
time <- Y[,"time"]
event <- Y[,"event"]
#### ZERO VARIANCE - ALWAYS
lst_dnz <- deleteZeroOrNearZeroVariance.mb(X = X,
remove_near_zero_variance = remove_near_zero_variance,
remove_zero_variance = remove_zero_variance,
toKeep.zv = toKeep.zv,
freqCut = FREQ_CUT)
X <- lst_dnz$X
variablesDeleted <- lst_dnz$variablesDeleted
#### COEF VARIATION
lst_dnzc <- deleteNearZeroCoefficientOfVariation.mb(X = X)
X <- lst_dnzc$X
variablesDeleted_cvar <- lst_dnzc$variablesDeleted
#### SCALING
lst_scale <- XY.mb.scale(X, Y, x.center, x.scale, y.center, y.scale)
Xh <- lst_scale$Xh
Yh <- lst_scale$Yh
xmeans <- lst_scale$xmeans
xsds <- lst_scale$xsds
ymeans <- lst_scale$ymeans
ysds <- lst_scale$ysds
X_norm <- Xh
#### MAX PREDICTORS
n.comp <- check.mb.maxPredictors(X, Y, MIN_EPV, n.comp, verbose = verbose)
max_comps <- min(unlist(purrr::map(X, ~ncol(.))))
n.comp <- min(n.comp, max_comps)
E <- list()
R2 <- list()
SCR <- list()
SCT <- list()
XXNA <- purrr::map(Xh, ~is.na(.)) #TRUE is NA
YNA <- is.na(Y) #TRUE is NA
#### ### ### ### ### ### ### ### ### ### ###
# ## MB:sPLS-COX ## ##
#### ### ### ### ### ### ### ### ### ### ###
#2. Surv function - NULL model
coxDR <- survival::coxph(survival::Surv(time = time, event = event, type = "right") ~ 1, as.data.frame(Xh))
#3. Residuals - Default is deviance because eval type="deviance"
DR_coxph <- residuals(coxDR, type = "deviance") #"martingale", "deviance", "score", "schoenfeld", "dfbeta"', "dfbetas", "scaledsch" and "partial"
#### ### ### ### ### ### ### ### ### ### ### ###
#### ### ### ### ### ### ### ### ### ### ### ###
## ##
## Beginning of the loop for the components ##
## ##
#### ### ### ### ### ### ### ### ### ### ### ###
#### ### ### ### ### ### ### ### ### ### ### ###
#4. MO-sPLS Algorithm
n_var <- purrr::map(Xh, ~ncol(.))
n_dr <- purrr::map(DR_coxph, ~ncol(.))
if(any(unlist(purrr::map(n_dr, ~is.null(.))))){
n_dr[unlist(purrr::map(n_dr, ~is.null(.)))==TRUE] = 1
}
#CENTER DEVIANCE RESIUDALS
mu <- mean(DR_coxph) #equivalent because Y it is not normalized
DR_coxph <- scale(DR_coxph, center = mu, scale = FALSE) #center DR to DR / patients
DR_coxph_ori <- DR_coxph
# AUTO DESIGN - https://mixomicsteam.github.io/mixOmics-Vignette/id_06.html#id_06:diablo-design
if(is.null(design)){
design <- getDesign.MB(Xh)
}
#### ### ### ### ### ### ### ### ### ###
# DIVIDE Y VENCERAS - BEST VECTOR SIZE #
#### ### ### ### ### ### ### ### ### ###
if(is.null(times)){
times <- getTimesVector(Yh, max_time_points)
}
if(is.null(vector)){
lst_BV <- getBestVectorMB(Xh = Xh, DR_coxph = DR_coxph, Yh = Yh, n.comp = n.comp, max.iter = max.iter, vector = vector,
MIN_AUC_INCREASE = MIN_AUC_INCREASE, MIN_NVAR = MIN_NVAR, MAX_NVAR = MAX_NVAR, cut_points = n.cut_points,
EVAL_METHOD = EVAL_METHOD, EVAL_EVALUATOR = pred.method, PARALLEL = FALSE, mode = "spls", times = times,
max_time_points = max_time_points, verbose = verbose)
keepX <- lst_BV$best.keepX
plotVAR <- plot_VAR_eval(lst_BV, EVAL_METHOD = EVAL_METHOD)
}else{
if(isa(vector, "list")){
keepX <- vector
#if list, but not n.comp length... and just one value in each block
if(!all(unlist(purrr::map(keepX, ~length(.)==n.comp))) & all(unlist(purrr::map(keepX, ~length(.)==1)))){
keepX <- purrr::map(keepX, ~rep(., n.comp))
}else if(!all(unlist(purrr::map(keepX, ~length(.)==1)))){
#more than one value... just take the first one
keepX <- purrr::map(keepX, ~rep(.[[1]], n.comp))
}
}else{
if(length(vector)==length(X)){
keepX <- list()
for(e in 1:length(vector)){
keepX[[e]] <- rep(vector[[e]], n.comp)
}
names(keepX) <- names(X)
}else{
message("Vector does not has the proper structure. Optimizing best n.variables by using your vector as start vector.")
lst_BV <- getBestVectorMB(Xh = Xh, DR_coxph = DR_coxph, Yh = Yh, n.comp = n.comp, max.iter = max.iter, vector = vector,
MIN_AUC_INCREASE = MIN_AUC_INCREASE, MIN_NVAR = MIN_NVAR, MAX_NVAR = MAX_NVAR, cut_points = n.cut_points,
EVAL_METHOD = EVAL_METHOD, EVAL_EVALUATOR = pred.method, PARALLEL = FALSE, mode = "spls", times = times,
max_time_points = max_time_points, verbose = verbose)
keepX <- lst_BV$best.keepX
plotVAR <- plot_VAR_eval(lst_BV, EVAL_METHOD = EVAL_METHOD)
}
}
}
mb.spls <- mixOmics::block.spls(X = Xh, Y = DR_coxph_ori, ncomp = n.comp, keepX = keepX, design = design,
mode = "regression",
scale = FALSE, all.outputs = TRUE, near.zero.var = FALSE)
#PREDICTION
predplsfit <- predict_mixOmics.mb.pls(mb.spls, Xh, n.comp)
for(block in names(predplsfit$predict)){
E[[block]] <- list()
SCR[[block]] <- list()
SCT[[block]] <- list()
R2[[block]] <- list()
for(h in 1:n.comp){
E[[block]][[h]] <- DR_coxph_ori - predplsfit$predict[[block]][,,h]
SCR[[block]][[h]] = sum(apply(E[[block]][[h]],2,function(x) sum(x**2)))
SCT[[block]][[h]] = sum(apply(as.matrix(DR_coxph_ori),2,function(x) sum(x**2))) #equivalent sum((DR_coxph_ori - mean(DR_coxph_ori))**2)
R2[[block]][[h]] = 1 - (SCR[[block]][[h]]/SCT[[block]][[h]]) #deviance residuals explanation
}
R2[[block]] = mb.spls$prop_expl_var[[block]]
}
#### ### ### ### ### ### #### ### ### ### ###
# #
# Computation of the coefficients #
# of the model with kk components #
# #
#### ### ### ### ### ### #### ### ### ### ###
#### ### ### ### ### ### #### ### ### ### ##
### ## PLS-COX ### ##
#### ### ### ### ### ### #### ### ### ### ##
n.comp_used <- ncol(mb.spls$variates$Y) #can be lesser than expected because we have lesser variables to select because penalization
n.varX_used <- list()
for(i in names(Xh)){
aux <- list()
for(j in 1:n.comp){
aux[[j]] <- rownames(mb.spls$loadings[[i]][which(mb.spls$loadings[[i]][,j]!=0),j,drop = FALSE])
}
names(aux) <- colnames(mb.spls$loadings[[i]])
n.varX_used[[i]] <- aux
}
data <- as.data.frame(mb.spls$variates[[1]][,,drop = FALSE])
for(b in names(Xh)[2:length(Xh)]){
data <- cbind(data, as.data.frame(mb.spls$variates[[b]][,,drop = FALSE]))
}
update_colnames <- paste0("comp_", 1:ncol(mb.spls$variates[[1]]))
colnames(data) <- apply(expand.grid(update_colnames, names(Xh)), 1, paste, collapse="_")
cox_model <- cox(X = data, Y = Yh,
x.center = FALSE, x.scale = FALSE,
#y.center = FALSE, y.scale = FALSE,
remove_non_significant = FALSE, alpha = alpha, FORCE = TRUE)
# RETURN a MODEL with ALL significant Variables from complete, deleting one by one
removed_variables <- NULL
removed_variables_cor <- NULL
# REMOVE NA-PVAL VARIABLES
# p_val could be NA for some variables (if NA change to P-VAL=1)
# DO IT ALWAYS, we do not want problems in COX models
if(all(c("time", "event") %in% colnames(data))){
lst_model <- removeNAorINFcoxmodel(model = cox_model$survival_model$fit, data = data, time.value = NULL, event.value = NULL)
}else{
lst_model <- removeNAorINFcoxmodel(model = cox_model$survival_model$fit, data = cbind(data, Yh), time.value = NULL, event.value = NULL)
}
cox_model$survival_model$fit <- lst_model$model
removed_variables_cor <- c(removed_variables_cor, lst_model$removed_variables)
#RETURN a MODEL with ALL significant Variables from complete, deleting one by one in backward method
if(remove_non_significant){
if(all(c("time", "event") %in% colnames(data))){
lst_rnsc <- removeNonSignificativeCox(cox = cox_model$survival_model$fit, alpha = alpha, cox_input = data, time.value = NULL, event.value = NULL)
}else{
lst_rnsc <- removeNonSignificativeCox(cox = cox_model$survival_model$fit, alpha = alpha, cox_input = cbind(data, Yh), time.value = NULL, event.value = NULL)
}
cox_model$survival_model$fit <- lst_rnsc$cox
removed_variables <- lst_rnsc$removed_variables
}
survival_model <- cox_model$survival_model
if(isa(survival_model$fit,"coxph")){
survival_model <- getInfoCoxModel(survival_model$fit)
}else{
survival_model <- NULL
}
#get W.star
Tmat <- Pmat <- Cmat <- Wmat <- W.star <- B.hat <- list()
for(i in 1:length(Xh)){
#select just features != 0 (selected features)
names <- purrr::map(1:n.comp_used, ~rownames(mb.spls$loadings[[i]])[which(mb.spls$loadings[[i]][,.,drop = FALSE]!=0)])
all_names <- unique(unlist(names))
aux_Pmat = matrix(data = 0, nrow = ncol(Xh[[i]]), ncol = n.comp_used)
rownames(aux_Pmat) <- colnames(Xh[[i]])
colnames(aux_Pmat) <- colnames(mb.spls$loadings[[i]])
for(c in 1:n.comp_used){
names <- rownames(mb.spls$loadings[[i]])[which(mb.spls$loadings[[i]][,c,drop = FALSE]!=0)]
aux <- crossprod(Xh[[i]][,names,drop = FALSE], mb.spls$variates[[i]][,c])
aux_Pmat[names,c] = aux
}
Pmat[[i]] = aux_Pmat
Cmat[[i]] = crossprod(Yh[,"event"], mb.spls$variates[[i]])
Wmat[[i]] = mb.spls$loadings[[i]]
Tmat[[i]] = mb.spls$variates[[i]]
colnames(Wmat[[i]]) <- paste0("comp_", 1:ncol(Wmat[[i]]))
colnames(Pmat[[i]]) <- paste0("comp_", 1:ncol(Pmat[[i]]))
colnames(Tmat[[i]]) <- paste0("comp_", 1:ncol(Tmat[[i]]))
# W.star[[i]] <- lapply(1:n.comp, function(x){Wmat[[i]][,1:x,drop = FALSE] %*% solve(t(Pmat[[i]][,1:x,drop = FALSE]) %*% Wmat[[i]][, 1:x,drop = FALSE])})
# B.hat[[i]] <- lapply(1:n.comp, function(x){W.star[[i]][[x]][,1:x,drop = FALSE] %*% t(Cmat[[i]][,1:x,drop = FALSE])})
aux_W.star = matrix(data = 0, nrow = ncol(Xh[[i]]), ncol = n.comp_used)
rownames(aux_W.star) <- colnames(Xh[[i]])
colnames(aux_W.star) <- colnames(mb.spls$loadings[[i]])
for(c in 1:n.comp_used){
names <- rownames(mb.spls$loadings[[i]])[which(mb.spls$loadings[[i]][,c,drop = FALSE]!=0)]
if(is.null(Pmat[[i]][names,c,drop = FALSE]) | is.null(Wmat[[i]][names,c,drop = FALSE])){
message(paste0(pkg.env$mb.splsdrcox, " model cannot be computed because P or W vectors are NULL. Returning NA."))
# invisible(gc())
return(NA)
}
#aux <- Wmat[[i]][names,c,drop = FALSE] %*% solve(t(Pmat[[i]][names,c,drop = FALSE]) %*% Wmat[[i]][names,c,drop = FALSE])
#W.star
#sometimes solve(t(P) %*% W)
#system is computationally singular: reciprocal condition number = 6.24697e-18
# PW <- tryCatch(expr = {solve(t(Pmat[[i]][names,c,drop = FALSE]) %*% Wmat[[i]][names,c,drop = FALSE], tol = tol)},
# error = function(e){
# if(verbose){
# message(e$message)
# }
# NA
# })
PW <- tryCatch(expr = {MASS::ginv(t(Pmat[[i]][names,c,drop = FALSE]) %*% Wmat[[i]][names,c,drop = FALSE])},
error = function(e){
if(verbose){
message(e$message)
}
NA
})
if(all(is.na(PW))){
message(paste0(pkg.env$mb.splsdrcox," model cannot be computed due to ginv(t(P) %*% W). Multicollineality could be present in your data. Returning NA."))
# invisible(gc())
return(NA)
}
# What happen when you cannot compute W.star but you have P and W?
aux <- Wmat[[i]][names,c,drop = FALSE] %*% PW
aux_W.star[names,c] = aux
}
W.star[[i]] <- aux_W.star
B.hat[[i]] <- W.star[[i]] %*% t(Cmat[[i]][,1:n.comp_used,drop = FALSE])
colnames(W.star[[i]]) <- paste0("comp_", 1:ncol(W.star[[i]]))
}
# #get W.star
# Tmat <- Pmat <- Cmat <- Wmat <- W.star <- B.hat <- list()
# for(i in 1:length(Xh)){
# Pmat[[i]] = crossprod(Xh[[i]], mb.spls$variates[[i]])
# Cmat[[i]] = crossprod(DR_coxph_ori, mb.spls$variates[[i]])
# Wmat[[i]] = mb.spls$loadings[[i]]
# Tmat[[i]] = mb.spls$variates[[i]]
#
# colnames(Wmat[[i]]) <- paste0("comp_", 1:ncol(Wmat[[i]]))
# colnames(Pmat[[i]]) <- paste0("comp_", 1:ncol(Pmat[[i]]))
# colnames(Tmat[[i]]) <- paste0("comp_", 1:ncol(Tmat[[i]]))
#
# # W.star[[i]] <- lapply(1:n.comp, function(x){Wmat[[i]][,1:x,drop = FALSE] %*% solve(t(Pmat[[i]][,1:x,drop = FALSE]) %*% Wmat[[i]][, 1:x,drop = FALSE])})
# # B.hat[[i]] <- lapply(1:n.comp, function(x){Wmat[[i]][,1:x,drop = FALSE] %*% solve(t(Pmat[[i]][,1:x,drop = FALSE]) %*% Wmat[[i]][,1:x,drop = FALSE]) %*% t(Cmat)[[i]][,1:x,drop = FALSE]})
#
# W.star[[i]] <- Wmat[[i]][,1:n.comp_used,drop = FALSE] %*% solve(t(Pmat[[i]][,1:n.comp_used,drop = FALSE]) %*% Wmat[[i]][, 1:n.comp_used,drop = FALSE])
# B.hat[[i]] <- W.star[[i]] %*% t(Cmat[[i]][,1:n.comp_used,drop = FALSE])
# }
names(Pmat) <- names(Xh)
names(Cmat) <- names(Xh)
names(Wmat) <- names(Xh)
names(Tmat) <- names(Xh)
names(W.star) <- names(Xh)
names(B.hat) <- names(Xh)
# MixOmics, a la hora de generar los nuevos scores para nuevas X (o las mismas de entrenamiento),
# a parte de realizar la multiplicacion X*W.STAR, realiza luego una normalizacion de los scores en
# base a la norma de la propia X usada, de esa manera, en el multiblock de SPLS los resultados no
# coinciden con los de la funcion predict de mixOmics. La siguiente linea es la que se ejecuta una
# vez realizado el calculo de los nuevos SCORES.
# head(predplsfit$variates$genes)
# head(mb.spls$X$genes %*% W.star[[1]][[n.comp]])
# head(mb.spls$X$genes %*% W.star[[1]][[n.comp]])
# head(mb.spls$X$genes %*% Wmat[[1]] %*% solve(t(Pmat[[1]]) %*% Wmat[[1]]))
# #
# Pmat[[1]] = crossprod(Xh$genes, tt_mbsplsDR[[1]])
# Wmat[[1]] = mb.spls$AVE$AVE_inner
# head(mb.spls$X$genes %*% Wmat[[1]] %*% solve(t(Pmat[[1]]) %*% Wmat[[1]]))
#
# new_t <- mb.spls$X$genes %*% W.star$genes
# new_t2 <- matrix(data = sapply(1:ncol(new_t),
# function(x) {new_t[, x] * apply(mb.spls$variates$genes, 2,
# function(y){(norm(y, type = "2"))^2})[x]}), nrow = nrow(Xh$genes), ncol = ncol(new_t))
# head(new_t2)
# Si lo aplicamos a SPLS normal, tambien falla el calculo de la W*. Puede ser que sea debido a que los calculos de
# los loadings de X se estan realizando con la normalizacion de la C y por tanto la correccion de la norma soluciona el problema.
# Sin embargo, hubiera sido mas sencillo trabajar directamente con una metodologia correcta. En mi caso, si utilizo mixomics, debo usar
# su funcion siempre para predecir los scores de las nuevas X y NO LO ESTOY HACIENDO!
#get W.star
W <- Wmat
P <- Pmat
W.star <- W.star
B.hat <- B.hat # REVISAR SI LA W* es correcta asà como B.hat!!! Porque actualmente realizo los cálculos a mano en base al código de mixomics
Ts <- Tmat
func_call <- match.call()
if(!returnData){
survival_model <- removeInfoSurvivalModel(survival_model)
}
all_scores <- NULL
for(b in names(Ts)){
aux_scores <- Ts[[b]]
colnames(aux_scores) <- paste0(colnames(aux_scores), "_", b)
all_scores <- cbind(all_scores, aux_scores)
}
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
# invisible(gc())
return(mb.splsdrcox_class(list(X = list("data" = if(returnData) X_norm else NA,
"loadings" = P,
"weightings" = if(returnData) W else NA,
"W.star" = W.star,
"scores" = Ts,
"scores_all" = all_scores,
"E" = if(returnData) E else NA,
"x.mean" = xmeans, "x.sd" = xsds),
Y = list("deviance_residuals" = if(returnData) DR_coxph_ori else NA,
"dr.mean" = NULL, "dr.sd" = NULL, #deviance_residuals object already centered
"data" = Yh,
"y.mean" = ymeans, "y.sd" = ysds),
survival_model = survival_model,
mb.model = mb.spls,
n.comp = n.comp_used, #number of components
n.varX = n.varX_used,
call = if(returnData) func_call else NA,
X_input = if(returnData) X_original else NA,
Y_input = if(returnData) Y_original else NA,
B.hat = B.hat,
R2 = R2,
SCR = SCR,
SCT = SCT,
alpha = alpha,
nsv = removed_variables,
nzv = variablesDeleted,
nz_coeffvar = variablesDeleted_cvar,
class = pkg.env$mb.splsdrcox,
time = time)))
}
#### ### ### ### ###
# CROSS-EVALUATION #
#### ### ### ### ###
#' MB.sPLS-DRCOX Cross-Validation
#' @description The cv.mb.splsdrcox function performs cross-validation for the MB.sPLS-DRCOX model,
#' a specialized model for survival analysis with high-dimensional data. This function
#' systematically evaluates the performance of the model across different hyperparameters and
#' configurations to determine the optimal settings for the given data.
#'
#' @details The function operates by partitioning the data into multiple subsets (folds) and
#' iteratively holding out one subset for validation while training on the remaining subsets. The
#' cross-validation process is repeated for a specified number of runs, ensuring a robust assessment
#' of the model's performance. The function offers flexibility in terms of the number of PLS components,
#' the range of variables considered, and the evaluation metrics used.
#'
#' The function provides an option to center and scale the explanatory variables, which can be crucial
#' for ensuring consistent performance, especially when the variables are measured on different scales.
#' Additionally, the function incorporates features to handle near-zero and zero variance variables,
#' which can be problematic in high-dimensional datasets.
#'
#' For model evaluation, users can choose between various metrics, including AUC, c-index, and Brier
#' Score. The function also allows for the specification of weights for these metrics, enabling users
#' to prioritize certain metrics over others based on the research context.
#'
#' The function's design also emphasizes computational efficiency. It offers a parallel processing
#' option to expedite the cross-validation process, especially beneficial for large datasets. However,
#' users should be cautious about potential high RAM consumption when using this option.
#'
#' @param X List of numeric matrices or data.frames. Explanatory variables. Qualitative variables must be
#' transform into binary variables.
#' @param Y Numeric matrix or data.frame. Response variables. Object must have two columns named as
#' "time" and "event". For event column, accepted values are: 0/1 or FALSE/TRUE for censored and
#' event observations.
#' @param max.ncomp Numeric. Maximum number of PLS components to compute for the cross validation
#' (default: 8).
#' @param vector Numeric vector. Used for computing best number of variables. As many values as
#' components have to be provided. If vector = NULL, an automatic detection is perform (default: NULL). If
#' vector is a list, must be named as the names of X param followed by the number of variables to select.
#' @param design Numeric matrix. Matrix of size (number of blocks in X) x (number of blocks in X) with
#' values between 0 and 1. Each value indicates the strength of the relationship to be modeled between
#' two blocks; a value of 0 indicates no relationship, 1 is the maximum value. If NULL, auto-design is computed (default: NULL).
#' @param MIN_NVAR Numeric. Minimum range size for computing cut points to select the best number of
#' variables to use (default: 10).
#' @param MAX_NVAR Numeric. Maximum range size for computing cut points to select the best number of
#' variables to use (default: 1000).
#' @param n.cut_points Numeric. Number of cut points for searching the optimal number of variables.
#' If only two cut points are selected, minimum and maximum size are used. For MB approaches as many
#' as n.cut_points^n.blocks models will be computed as minimum (default: 5).
#' @param EVAL_METHOD Character. The selected metric will be use to compute the best
#' number of variables. Must be one of the following: "AUC", "IBS" or "C.Index" (default: "AUC").
#' @param n_run Numeric. Number of runs for cross validation (default: 3).
#' @param k_folds Numeric. Number of folds for cross validation (default: 10).
#' @param x.center Logical. If x.center = TRUE, X matrix is centered to zero means (default: TRUE).
#' @param x.scale Logical. If x.scale = TRUE, X matrix is scaled to unit variances (default: FALSE).
#' @param remove_near_zero_variance Logical. If remove_near_zero_variance = TRUE, near zero variance
#' variables will be removed (default: TRUE).
#' @param remove_zero_variance Logical. If remove_zero_variance = TRUE, zero variance variables will
#' be removed (default: TRUE).
#' @param toKeep.zv Character vector. Name of variables in X to not be deleted by (near) zero variance
#' filtering (default: NULL).
#' @param remove_variance_at_fold_level Logical. If remove_variance_at_fold_level = TRUE, (near)
#' zero variance will be removed at fold level. Not recommended. (default: FALSE).
#' @param remove_non_significant_models Logical. If remove_non_significant_models = TRUE,
#' non-significant models are removed before computing the evaluation. A non-significant model is a
#' model with at least one component/variable with a P-Value higher than the alpha cutoff.
#' @param alpha Numeric. Numerical values are regarded as significant if they fall below the
#' threshold (default: 0.05).
#' @param remove_non_significant Logical. If remove_non_significant = TRUE, non-significant
#' variables/components in final cox model will be removed until all variables are significant by
#' forward selection (default: FALSE).
#' @param alpha Numeric. Numerical values are regarded as significant if they fall below the
#' threshold (default: 0.05).
#' @param w_AIC Numeric. Weight for AIC evaluator. All weights must sum 1 (default: 0).
#' @param w_C.Index Numeric. Weight for C-Index evaluator. All weights must sum 1 (default: 0).
#' @param w_AUC Numeric. Weight for AUC evaluator. All weights must sum 1 (default: 1).
#' @param w_I.BRIER Numeric. Weight for BRIER SCORE evaluator. All weights must sum 1 (default: 0).
#' @param times Numeric vector. Time points where the AUC will be evaluated. If NULL, a maximum of
#' 'max_time_points' points will be selected equally distributed (default: NULL).
#' @param max_time_points Numeric. Maximum number of time points to use for evaluating the model
#' (default: 15).
#' @param MIN_AUC_INCREASE Numeric. Minimum improvement between different cross validation models to
#' continue evaluating higher values in the multiple tested parameters. If it is not reached for next
#' 'MIN_COMP_TO_CHECK' models and the minimum 'MIN_AUC' value is reached, the evaluation stops
#' (default: 0.01).
#' @param MIN_AUC Numeric. Minimum AUC desire to reach cross-validation models. If the minimum is
#' reached, the evaluation could stop if the improvement does not reach an AUC higher than adding the
#' 'MIN_AUC_INCREASE' value (default: 0.8).
#' @param MIN_COMP_TO_CHECK Numeric. Number of penalties/components to evaluate to check if the AUC
#' improves. If for the next 'MIN_COMP_TO_CHECK' the AUC is not better and the 'MIN_AUC' is meet, the
#' evaluation could stop (default: 3).
#' @param pred.attr Character. Way to evaluate the metric selected. Must be one of the following:
#' "mean" or "median" (default: "mean").
#' @param pred.method Character. AUC evaluation algorithm method for evaluate the model performance.
#' Must be one of the following: "risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C",
#' "smoothROCtime_I" (default: "cenROC").
#' @param max.iter Numeric. Maximum number of iterations for PLS convergence (default: 200).
#' @param fast_mode Logical. If fast_mode = TRUE, for each run, only one fold is evaluated
#' simultaneously. If fast_mode = FALSE, for each run, all linear predictors are computed for test
#' observations. Once all have their linear predictors, the evaluation is perform across all the
#' observations together (default: FALSE).
#' @param MIN_EPV Numeric. Minimum number of Events Per Variable (EPV) you want reach for the final
#' cox model. Used to restrict the number of variables/components can be computed in final cox models.
#' If the minimum is not meet, the model cannot be computed (default: 5).
#' @param return_models Logical. Return all models computed in cross validation (default: FALSE).
#' @param returnData Logical. Return original and normalized X and Y matrices (default: TRUE).
#' @param PARALLEL Logical. Run the cross validation with multicore option. As many cores as your
#' total cores - 1 will be used. It could lead to higher RAM consumption (default: FALSE).
#' @param verbose Logical. If verbose = TRUE, extra messages could be displayed (default: FALSE).
#' @param seed Number. Seed value for performing runs/folds divisions (default: 123).
#'
#' @return Instance of class "Coxmos" and model "cv.MB.sPLS-DRCOX".
#' \code{best_model_info}: A data.frame with the information for the best model.
#' \code{df_results_folds}: A data.frame with fold-level information.
#' \code{df_results_runs}: A data.frame with run-level information.
#' \code{df_results_comps}: A data.frame with component-level information (for cv.coxEN, EN.alpha
#' information).
#'
#' \code{lst_models}: If return_models = TRUE, return a the list of all cross-validated models.
#' \code{pred.method}: AUC evaluation algorithm method for evaluate the model performance.
#'
#' \code{opt.comp}: Optimal component selected by the best_model.
#' \code{opt.nvar}: Optimal number of variables selected by the best_model.
#' \code{design}: Design matrix used for computing the MultiBlocks models.
#'
#' \code{plot_AIC}: AIC plot by each hyper-parameter.
#' \code{plot_C.Index}: C-Index plot by each hyper-parameter.
#' \code{plot_I.BRIER}: Integrative Brier Score plot by each hyper-parameter.
#' \code{plot_AUC}: AUC plot by each hyper-parameter.
#'
#' \code{class}: Cross-Validated model class.
#'
#' \code{lst_train_indexes}: List (of lists) of indexes for the observations used in each run/fold
#' for train the models.
#' \code{lst_test_indexes}: List (of lists) of indexes for the observations used in each run/fold
#' for test the models.
#'
#' \code{time}: time consumed for running the cross-validated function.
#'
#' @author Pedro Salguero Garcia. Maintainer: pedsalga@upv.edu.es
#'
#' @export
#'
#' @examples
#' \donttest{
#' data("X_multiomic")
#' data("Y_multiomic")
#' set.seed(123)
#' index_train <- caret::createDataPartition(Y_multiomic$event, p = .5, list = FALSE, times = 1)
#' X_train <- X_multiomic
#' X_train$mirna <- X_train$mirna[index_train,1:50]
#' X_train$proteomic <- X_train$proteomic[index_train,1:50]
#' Y_train <- Y_multiomic[index_train,]
#' cv.mb.splsdrcox_model <- cv.mb.splsdrcox(X_train, Y_train, max.ncomp = 2, vector = NULL,
#' n_run = 1, k_folds = 2, x.center = TRUE, x.scale = TRUE)
#' }
cv.mb.splsdrcox <- function(X, Y,
max.ncomp = 8, vector = NULL, design = NULL,
MIN_NVAR = 10, MAX_NVAR = NULL, n.cut_points = 5, EVAL_METHOD = "AUC",
n_run = 3, k_folds = 10,
x.center = TRUE, x.scale = FALSE,
remove_near_zero_variance = TRUE, remove_zero_variance = TRUE, toKeep.zv = NULL,
remove_variance_at_fold_level = FALSE,
remove_non_significant_models = FALSE, remove_non_significant = FALSE, alpha = 0.05,
w_AIC = 0, w_C.Index = 0, w_AUC = 1, w_I.BRIER = 0, times = NULL,
max_time_points = 15,
MIN_AUC_INCREASE = 0.01, MIN_AUC = 0.8, MIN_COMP_TO_CHECK = 3,
pred.attr = "mean", pred.method = "cenROC", max.iter= 200, fast_mode = FALSE,
MIN_EPV = 5, return_models = FALSE, returnData = FALSE,
PARALLEL = FALSE, verbose = FALSE, seed = 123){
# tol Numeric. Tolerance for solving: solve(t(P) %*% W) (default: 1e-15).
tol = 1e-10
t1 <- Sys.time()
y.center = y.scale = FALSE
FREQ_CUT <- 95/5
#### ### ###
# WARNINGS #
#### ### ###
#### Check evaluator installed:
checkLibraryEvaluator(pred.method)
#### Check values classes and ranges
params_with_limits <- list("MIN_AUC_INCREASE" = MIN_AUC_INCREASE, "MIN_AUC" = MIN_AUC, "alpha" = alpha,
"w_AIC" = w_AIC, "w_C.Index" = w_C.Index, "w_AUC" = w_AUC, "w_I.BRIER" = w_I.BRIER)
check_min0_max1_variables(params_with_limits)
numeric_params <- list("max.ncomp" = max.ncomp, "MIN_NVAR" = MIN_NVAR, "n.cut_points" = n.cut_points,
"n_run" = n_run, "k_folds" = k_folds, "max_time_points" = max_time_points,
"MIN_COMP_TO_CHECK" = MIN_COMP_TO_CHECK, "MIN_EPV" = MIN_EPV, "seed" = seed, "tol" = tol)
if(!is.null(MAX_NVAR)){
numeric_params$MAX_NVAR <- MAX_NVAR
}
check_class(numeric_params, class = "numeric")
logical_params <- list("x.center" = unlist(x.center), "x.scale" = unlist(x.scale),
#"y.center" = y.center, "y.scale" = y.scale,
"remove_near_zero_variance" = remove_near_zero_variance, "remove_zero_variance" = remove_zero_variance,
"remove_variance_at_fold_level" = remove_variance_at_fold_level,
"remove_non_significant_models" = remove_non_significant_models,
"remove_non_significant" = remove_non_significant,
"return_models" = return_models,"returnData" = returnData, "verbose" = verbose, "PARALLEL" = PARALLEL)
check_class(logical_params, class = "logical")
character_params <- list("EVAL_METHOD" = EVAL_METHOD, "pred.attr" = pred.attr, "pred.method" = pred.method)
check_class(character_params, class = "character")
#### Check cv-folds
lst_checkFR <- checkFoldRuns(Y, n_run, k_folds, fast_mode)
n_run <- lst_checkFR$n_run
fast_mode <- lst_checkFR$fast_mode
#### Check rownames
lst_check <- checkXY.rownames.mb(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
#### Check colnames
X <- checkColnamesIllegalChars.mb(X)
#### REQUIREMENTS
checkX.colnames.mb(X)
checkY.colnames(Y)
lst_check <- checkXY.mb.class(X, Y, verbose = verbose)
X <- lst_check$X
Y <- lst_check$Y
check.cv.weights(c(w_AIC, w_C.Index, w_I.BRIER, w_AUC))
# if(!pred.method %in% c("risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I")){
# stop_quietly(paste0("pred.method must be one of the following: ", paste0(c("risksetROC", "survivalROC", "cenROC", "nsROC", "smoothROCtime_C", "smoothROCtime_I"), collapse = ", ")))
# }
if(!pred.method %in% pkg.env$AUC_evaluators){
stop_quietly(paste0("pred.method must be one of the following: ", paste0(pkg.env$AUC_evaluators, collapse = ", ")))
}
#### ZERO VARIANCE - ALWAYS
if(!remove_variance_at_fold_level & (remove_near_zero_variance | remove_zero_variance)){
lst_dnz <- deleteZeroOrNearZeroVariance.mb(X = X,
remove_near_zero_variance = remove_near_zero_variance,
remove_zero_variance = remove_zero_variance,
toKeep.zv = toKeep.zv,
freqCut = FREQ_CUT)
X <- lst_dnz$X
variablesDeleted <- lst_dnz$variablesDeleted
}else{
variablesDeleted <- NULL
}
#### COEF VARIATION
if(!remove_variance_at_fold_level & (remove_near_zero_variance | remove_zero_variance)){
lst_dnzc <- deleteNearZeroCoefficientOfVariation.mb(X = X)
X <- lst_dnzc$X
variablesDeleted_cvar <- lst_dnzc$variablesDeleted
}else{
variablesDeleted_cvar <- NULL
}
#### MAX PREDICTORS
max.ncomp <- check.mb.ncomp(X, max.ncomp)
max.ncomp <- check.mb.maxPredictors(X, Y, MIN_EPV, max.ncomp, verbose = verbose)
if(MIN_COMP_TO_CHECK >= max.ncomp){
MIN_COMP_TO_CHECK = max(max.ncomp-1, 1)
}
# AUTO DESIGN - https://mixomicsteam.github.io/mixOmics-Vignette/id_06.html#id_06:diablo-design
if(is.null(design)){
#### SCALING
lst_scale <- XY.mb.scale(X, Y, x.center, x.scale, y.center, y.scale)
Xh <- lst_scale$Xh
design <- getDesign.MB(Xh)
}
#### #
# CV #
#### #
# lst_data <- splitData_Iterations_Folds.mb(X, Y, n_run = n_run, k_folds = k_folds, seed = seed) #FOR TEST
# lst_X_train <- lst_data$lst_X_train
# lst_Y_train <- lst_data$lst_Y_train
# lst_X_test <- lst_data$lst_X_test
# lst_Y_test <- lst_data$lst_Y_test
# k_folds <- lst_data$k_folds
#
# lst_train_indexes <- lst_data$lst_train_index
# lst_test_indexes <- lst_data$lst_test_index
lst_data <- splitData_Iterations_Folds_indexes(Y, n_run = n_run, k_folds = k_folds, seed = seed) #FOR TEST
lst_train_indexes <- lst_data$lst_train_index
lst_test_indexes <- lst_data$lst_test_index
#### ### ### ###
# TRAIN MODELS #
#### ### ### ###
total_models <- 1 * k_folds * n_run
comp_model_lst <- get_Coxmos_models2.0(method = pkg.env$mb.splsdrcox,
X_train = X, Y_train = Y,
lst_X_train = lst_train_indexes, lst_Y_train = lst_train_indexes,
max.ncomp = max.ncomp, penalty.list = NULL, EN.alpha.list = NULL, max.variables = NULL, vector = vector, design = design,
n_run = n_run, k_folds = k_folds,
MIN_NVAR = MIN_NVAR, MAX_NVAR = MAX_NVAR, MIN_AUC_INCREASE = MIN_AUC_INCREASE, EVAL_METHOD = EVAL_METHOD,
n.cut_points = n.cut_points,
x.center = x.center, x.scale = x.scale,
y.center = y.center, y.scale = y.scale,
remove_near_zero_variance = remove_variance_at_fold_level, remove_zero_variance = FALSE, toKeep.zv = NULL,
alpha = alpha, MIN_EPV = MIN_EPV,
remove_non_significant = remove_non_significant, tol = tol,
max.iter = max.iter, times = times, pred.method = pred.method, max_time_points = max_time_points,
returnData = returnData, total_models = total_models,
PARALLEL = PARALLEL, verbose = verbose)
# already check in Coxmos_models
# if(all(is.na(unlist(lst_model)))){
# message(paste0("Best model could NOT be obtained. All models computed present problems. Try to remove variance at fold level. If problem persists, try to delete manually some problematic variables."))
#
# t2 <- Sys.time()
# time <- difftime(t2,t1,units = "mins")
# if(return_models){
# return(cv.mb.splsdrcox_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = lst_model, pred.method = pred.method, opt.comp = NULL, opt.nvar = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.mb.splsdrcox, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
# }else{
# return(cv.mb.splsdrcox_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = NULL, pred.method = pred.method, opt.comp = NULL, opt.nvar = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.mb.splsdrcox, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
# }
# }
#### ### ### ### ### ### #
# BEST MODEL FOR CV DATA #
#### ### ### ### ### ### #
total_models <- max.ncomp * k_folds * n_run
df_results_evals <- get_COX_evaluation_AIC_CINDEX(comp_model_lst = comp_model_lst, alpha = alpha,
max.ncomp = max.ncomp, penalty.list = NULL, n_run = n_run, k_folds = k_folds,
total_models = total_models, remove_non_significant_models = remove_non_significant_models, verbose = verbose)
if(all(is.null(df_results_evals))){
message(paste0("Best model could NOT be obtained. All models computed present problems."))
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
if(return_models){
return(cv.mb.splsdrcox_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = comp_model_lst, pred.method = pred.method, opt.comp = NULL, opt.nvar = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.mb.splsdrcox, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}else{
return(cv.mb.splsdrcox_class(list(best_model_info = NULL, df_results_folds = NULL, df_results_runs = NULL, df_results_comps = NULL, lst_models = NULL, pred.method = pred.method, opt.comp = NULL, opt.nvar = NULL, plot_AIC = NULL, plot_C.Index = NULL, plot_I.BRIER = NULL, plot_AUC = NULL, class = pkg.env$cv.mb.splsdrcox, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}
}
#### ### ### ### ### ### #
# EVALUATING BRIER SCORE #
#### ### ### ### ### ### #
df_results_evals_comp <- NULL
df_results_evals_run <- NULL
df_results_evals_fold <- NULL
optimal_comp_index <- NULL
optimal_comp_flag <- FALSE
optimal_eta_index <- NULL
optimal_eta <- NULL
if(TRUE){ #compute always BRIER SCORE
#calculate time vector if still NULL
if(is.null(times)){
times <- getTimesVector(Y, max_time_points = max_time_points)
}
#As we are measuring just one evaluator and one method - PARALLEL = FALSE
lst_df <- get_COX_evaluation_BRIER(comp_model_lst = comp_model_lst,
fast_mode = fast_mode,
X_test = X, Y_test = Y,
lst_X_test = lst_test_indexes, lst_Y_test = lst_test_indexes,
df_results_evals = df_results_evals, times = times,
pred.method = pred.method, pred.attr = pred.attr,
max.ncomp = max.ncomp, n_run = n_run, k_folds = k_folds,
MIN_AUC_INCREASE = MIN_AUC_INCREASE, MIN_AUC = MIN_AUC, MIN_COMP_TO_CHECK = MIN_COMP_TO_CHECK,
w_I.BRIER = w_I.BRIER, method.train = pkg.env$mb.splsdrcox, PARALLEL = FALSE, verbose = verbose)
df_results_evals_comp <- lst_df$df_results_evals_comp
df_results_evals_run <- lst_df$df_results_evals_run
df_results_evals_fold <- lst_df$df_results_evals_fold
}
#### ### ### ### #
# EVALUATING AUC #
#### ### ### ### #
if(w_AUC!=0){
#total_models <- ifelse(!fast_mode, n_run * max.ncomp, k_folds * n_run * max.ncomp)#inside get_COX_evaluation_AUC
#times should be the same for all folds
#calculate time vector if still NULL
if(is.null(times)){
times <- getTimesVector(Y, max_time_points = max_time_points)
}
lst_df <- get_COX_evaluation_AUC(comp_model_lst = comp_model_lst,
X_test = X, Y_test = Y,
lst_X_test = lst_test_indexes, lst_Y_test = lst_test_indexes,
df_results_evals = df_results_evals, times = times,
fast_mode = fast_mode, pred.method = pred.method, pred.attr = pred.attr,
max.ncomp = max.ncomp, n_run = n_run, k_folds = k_folds,
MIN_AUC_INCREASE = MIN_AUC_INCREASE, MIN_AUC = MIN_AUC, MIN_COMP_TO_CHECK = MIN_COMP_TO_CHECK,
w_AUC = w_AUC, method.train = pkg.env$mb.splsdrcox, PARALLEL = FALSE, verbose = verbose)
if(is.null(df_results_evals_comp)){
df_results_evals_comp <- lst_df$df_results_evals_comp
}else{
df_results_evals_comp$AUC <- lst_df$df_results_evals_comp$AUC
}
if(is.null(df_results_evals_run)){
df_results_evals_run <- lst_df$df_results_evals_run
}else{
df_results_evals_run$AUC <- lst_df$df_results_evals_run$AUC
}
if(is.null(df_results_evals_fold)){
df_results_evals_fold <- lst_df$df_results_evals_fold
}else{
df_results_evals_fold$AUC <- lst_df$df_results_evals_fold$AUC
}
optimal_comp_index <- lst_df$optimal_comp_index
optimal_comp_flag <- lst_df$optimal_comp_flag
optimal_eta <- lst_df$optimal_eta
optimal_eta_index <- lst_df$optimal_eta_index
}
#### ### ### #
# BEST MODEL #
#### ### ### #
df_results_evals_comp <- cv.getScoreFromWeight(df_results_evals_comp, w_AIC, w_C.Index, w_I.BRIER, w_AUC,
colname_AIC = "AIC", colname_c_index = "C.Index", colname_AUC = "AUC", colname_BRIER = "IBS")
if(optimal_comp_flag){
best_model_info <- df_results_evals_comp[df_results_evals_comp[,"n.comps"]==optimal_comp_index,, drop = FALSE][1,]
best_model_info <- as.data.frame(best_model_info)
}else{
best_model_info <- df_results_evals_comp[which(df_results_evals_comp[,"score"] == max(df_results_evals_comp[,"score"], na.rm = TRUE)),, drop = FALSE][1,]
best_model_info <- as.data.frame(best_model_info)
}
best_n_var <- list()
aux_n_var <- as.numeric(strsplit(as.character(best_model_info$n.var), "_")[[1]])
for(e in 1:length(aux_n_var)){
best_n_var[[e]] <- aux_n_var[[e]]
}
names(best_n_var) <- names(X)
#### ###
# PLOT #
#### ###
class = pkg.env$mb.splsdrcox
lst_EVAL_PLOTS <- get_EVAL_PLOTS(fast_mode = fast_mode, best_model_info = best_model_info, w_AUC = w_AUC, w_I.BRIER = w_I.BRIER, max.ncomp = max.ncomp, penalty.list = NULL,
df_results_evals_fold = df_results_evals_fold, df_results_evals_run = df_results_evals_run, df_results_evals_comp = df_results_evals_comp,
colname_AIC = "AIC", colname_c_index = "C.Index", colname_AUC = "AUC", colname_BRIER = "IBS", x.text = "Component",
class = class)
ggp_AUC <- lst_EVAL_PLOTS$ggp_AUC
ggp_IBS <- lst_EVAL_PLOTS$ggp_IBS
ggp_C.Index <- lst_EVAL_PLOTS$ggp_C.Index
ggp_AIC <- lst_EVAL_PLOTS$ggp_AIC
df_results_evals_comp <- lst_EVAL_PLOTS$df_results_evals_comp
#### ### #
# RETURN #
#### ### #
message(paste0("Best model obtained."))
t2 <- Sys.time()
time <- difftime(t2,t1,units = "mins")
# invisible(gc())
if(return_models){
return(cv.mb.splsdrcox_class(list(best_model_info = best_model_info, df_results_folds = df_results_evals_fold, df_results_runs = df_results_evals_run, df_results_comps = df_results_evals_comp, lst_models = comp_model_lst, pred.method = pred.method, opt.comp = best_model_info$n.comps, opt.nvar = best_n_var, design = design, plot_AIC = ggp_AIC, plot_C.Index = ggp_C.Index, plot_I.BRIER = ggp_IBS, plot_AUC = ggp_AUC, class = pkg.env$cv.mb.splsdrcox, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}else{
return(cv.mb.splsdrcox_class(list(best_model_info = best_model_info, df_results_folds = df_results_evals_fold, df_results_runs = df_results_evals_run, df_results_comps = df_results_evals_comp, lst_models = NULL, pred.method = pred.method, opt.comp = best_model_info$n.comps, opt.nvar = best_n_var, design = design, plot_AIC = ggp_AIC, plot_C.Index = ggp_C.Index, plot_I.BRIER = ggp_IBS, plot_AUC = ggp_AUC, class = pkg.env$cv.mb.splsdrcox, lst_train_indexes = lst_train_indexes, lst_test_indexes = lst_test_indexes, time = time)))
}
}
### ## ##
# CLASS #
### ## ##
mb.splsdrcox_class = function(pls_model, ...) {
model = structure(pls_model, class = pkg.env$model_class,
model = pkg.env$mb.splsdrcox)
return(model)
}
cv.mb.splsdrcox_class = function(pls_model, ...) {
model = structure(pls_model, class = pkg.env$model_class,
model = pkg.env$cv.mb.splsdrcox)
return(model)
}
#### ### #
# EXTRAS #
#### ### #
predict_mixOmics.mb.pls <- function(mb.spls, Xh, n.comp, verbose = TRUE){
#PREDICTION
#both methods return same values
# but second with pseudo inverse matrix
predplsfit <- tryCatch(
# Specifying expression
# pmax - coefficients to be non-zero
expr = {
predict(object = mb.spls, newdata=Xh) #mixomics
},
error = function(e){
if(verbose){
message("Predicting values using a pseudo-inverse matrix...\n")
}
# Estimation matrix W, P and C
predict <- list()
scores <- list()
for(block in names(mb.spls$X)){
if(block == "Y"){
next
}
Pmat = crossprod(mb.spls$X[[block]], mb.spls$variates[[block]])
if(class(mb.spls)[[1]] %in% "block.splsda"){
Cmat = crossprod(as.matrix(as.numeric(as.character(mb.spls$Y))), mb.spls$variates[[block]])
}else{
Cmat = crossprod(mb.spls$X$Y, mb.spls$variates[[block]])
}
Wmat = mb.spls$loadings[[block]]
# PW <- tryCatch(expr = {MASS::ginv(t(Pmat) %*% Wmat)},
# error = function(e){
# if(verbose){
# message(e$message)
# }
# NA
# })
PW <- list()
for(i in 1:n.comp){
PW[[i]] <- tryCatch(expr = {MASS::ginv(t(Pmat[,1:i]) %*% Wmat[,1:i])},
error = function(e){
if(verbose){
message(e$message)
}
NA
})
}
scores[[block]] = Xh[[block]] %*% Wmat[, 1:n.comp]
Ypred = lapply(1:n.comp, function(x){Xh[[block]] %*% Wmat[, 1:x] %*% PW[[x]] %*% t(Cmat)[1:x, ]})
Ypred = sapply(Ypred, function(x){x}, simplify = "array")
predict[[block]] = array(Ypred, c(nrow(mb.spls$X[[block]]), ncol(mb.spls$X$Y), n.comp)) # in case one observation and only one Y, we need array() to keep it an array with a third dimension being ncomp
}
predplsfit <- list()
predplsfit$predict <- predict
predplsfit$variates <- scores
predplsfit
}
)
return(predplsfit)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.