Nothing
# =====================================================
# Function that obtains a statistic of centrality of a
# variable, given a sample of values.
# If the variable is numeric it returns de median, if it
# is a factor it returns the mode. In other cases it
# tries to convert to a factor and then returns the mode.
# =====================================================
# Luis Torgo, Jan 2009
# =====================================================
.CentralValue <- function(x, weights=NULL) {
if (is.numeric(x)) {
if (is.null(weights)) median(x,na.rm=TRUE)
else if ((s <- sum(weights)) > 0) sum(x*(weights/s)) else NA
} else {
x <- as.factor(x)
if (is.null(weights)) levels(x)[which.max(table(x))]
else levels(x)[which.max(aggregate(weights, list(x), sum)[, 2])]
}
}
# =====================================================
# Function that fills in all unknowns using the k Nearest
# Neighbors of each case with unknowns.
# By default it uses the values of the neighbors and
# obtains an weighted (by the distance to the case) average
# of their values to fill in the unknowns.
# If meth='median' it uses the median/most frequent value,
# instead.
# =====================================================
# Luis Torgo, Mar 2009, Nov 2011
# =====================================================
ImputeKnn <- function(data, k=10, scale=TRUE, meth='weighAvg', distData=NULL) {
n <- nrow(data)
if (!is.null(distData)) {
distInit <- n+1
data <- rbind(data,distData)
} else distInit <- 1
N <- nrow(data)
ncol <- ncol(data)
nomAttrs <- rep(F,ncol)
for(i in seq(ncol)) nomAttrs[i] <- is.factor(data[,i])
nomAttrs <- which(nomAttrs)
hasNom <- length(nomAttrs)
contAttrs <- setdiff(seq(ncol),nomAttrs)
dm <- data
if (scale) dm[,contAttrs] <- scale(dm[,contAttrs])
if (hasNom)
for(i in nomAttrs) dm[,i] <- as.integer(dm[,i])
dm <- as.matrix(dm)
nas <- which(!complete.cases(dm))
if (!is.null(distData)) tgt.nas <- nas[nas <= n]
else tgt.nas <- nas
if (length(tgt.nas) == 0)
warning("No case has missing values. Stopping as there is nothing to do.")
xcomplete <- dm[setdiff(distInit:N,nas),]
if (nrow(xcomplete) < k)
stop("Not sufficient complete cases for computing neighbors.")
for (i in tgt.nas) {
tgtAs <- which(is.na(dm[i,]))
dist <- scale(xcomplete,dm[i,],FALSE)
xnom <- setdiff(nomAttrs,tgtAs)
if (length(xnom)) dist[,xnom] <-ifelse(dist[,xnom]>0,1,dist[,xnom])
dist <- dist[,-tgtAs]
dist <- sqrt(drop(dist^2 %*% rep(1,ncol(dist))))
ks <- order(dist)[seq(k)]
for(j in tgtAs)
if (meth == 'median')
data[i,j] <- .CentralValue(data[setdiff(distInit:N,nas),j][ks])
else
data[i,j] <- .CentralValue(data[setdiff(distInit:N,nas),j][ks],exp(-dist[ks]))
}
data[1:n,]
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.