Nothing
egamma <-
function (x, method = "mle", ci = FALSE, ci.type = "two-sided",
ci.method = "normal.approx", normal.approx.transform = "kulkarni.powar",
conf.level = 0.95)
{
if (!is.vector(x, mode = "numeric") || is.factor(x))
stop("'x' must be a numeric vector")
data.name <- deparse(substitute(x))
if ((bad.obs <- sum(!(x.ok <- is.finite(x)))) > 0) {
is.not.finite.warning(x)
x <- x[x.ok]
warning(paste(bad.obs, "observations with NA/NaN/Inf in 'x' removed."))
}
n <- length(x)
if (n < 2 || any(x < 0) || length(unique(x)) < 2)
stop(paste("'x' must contain at least 2 non-missing distinct values,",
"and all non-missing values of x must be non-negative."))
method <- match.arg(method, c("mle", "bcmle", "mme", "mmue"))
m <- mean(x)
s <- sqrt((n - 1)/n) * sd(x)
shape <- (m/s)^2
if (method != "mme") {
shape <- switch(method, mmue = (m/(sqrt(n/(n - 1)) *
s))^2, bcmle = , mle = {
msf <- function(shape, lmx, mlx) {
(log(shape) - digamma(shape) - lmx + mlx)^2
}
nlminb(start = shape, objective = msf, lower = .Machine$double.eps,
lmx = log(m), mlx = mean(log(x)))$par
})
}
if (method == "bcmle") {
shape <- ((n - 3)/n) * shape + (2/(3 * n))
}
scale <- m/shape
method.string <- switch(method, mle = "MLE", bcmle = "Bias-Corrected MLE",
mme = "Method of Moments", mmue = paste("Method of Moments Based on\n",
space(33), "Unbiased Variance Estimate", sep = ""))
ret.list <- list(distribution = "Gamma", sample.size = n,
parameters = c(shape = shape, scale = scale), method = method.string,
data.name = data.name, bad.obs = bad.obs)
if (ci) {
ci.type <- match.arg(ci.type, c("two-sided", "lower",
"upper"))
ci.method <- match.arg(ci.method, c("normal.approx",
"chisq.approx", "chisq.adj", "profile.likelihood"))
if (ci.method == "profile.likelihood") {
if (method != "mle")
stop("When ci.method=\"profile.likelihood\" you must set method=\"mle\"")
}
normal.approx.transform <- match.arg(normal.approx.transform,
c("kulkarni.powar", "cube.root", "fourth.root"))
if (conf.level <= 0 || conf.level >= 1)
stop("The value of 'conf.level' must be between 0 and 1.")
if (ci.method %in% c("normal.approx", "profile.likelihood")) {
ci.obj <- ci.gamma.normal.approx(x = x, shape = shape,
shape.est.method = method, ci.type = ci.type,
conf.level = conf.level, normal.approx.transform = normal.approx.transform)
if (ci.method == "profile.likelihood") {
limits <- ci.obj$limits
names(limits) <- NULL
ci.obj <- ci.gamma.profile.likelihood(x = x,
shape.mle = shape, scale.mle = scale, ci.type = ci.type,
conf.level = conf.level, LCL.start = limits[1],
UCL.start = limits[2])
}
}
else if (ci.method == "chisq.approx") {
ci.obj <- ci.gamma.chisq.approx(x = x, shape = shape,
shape.est.method = method, ci.type = ci.type,
conf.level = conf.level)
}
else {
if (n < 5 || conf.level > (1 - 0.005) || conf.level <
(1 - 0.25))
stop(paste("When ci.method='chisq.adj' x", "must contain at least 5 non-missing values, and",
"conf.level must be between 0.75 and 0.995."))
if (n == 5 && conf.level >= 0.99)
stop(paste("When ci.method='chisq.adj' and the sample size is 5,",
"conf.level must be less than 0.99."))
ci.obj <- ci.gamma.chisq.adj(x = x, shape = shape,
shape.est.method = method, ci.type = ci.type,
conf.level = conf.level)
}
ret.list <- c(ret.list, list(interval = ci.obj))
}
oldClass(ret.list) <- "estimate"
ret.list
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.