Nothing
ezmlnormAlt <-
function (x, method = "mvue", ci = FALSE, ci.type = "two-sided",
ci.method = "normal.approx", conf.level = 0.95)
{
if (!is.vector(x, mode = "numeric") || is.factor(x))
stop("'x' must be a numeric vector")
data.name <- deparse(substitute(x))
if ((bad.obs <- sum(!(x.ok <- is.finite(x)))) > 0) {
is.not.finite.warning(x)
x <- x[x.ok]
warning(paste(bad.obs, "observations with NA/NaN/Inf in 'x' removed."))
}
if (any(x < 0))
stop("All values of 'x' must be non-negative")
r <- sum(x == 0)
if (r == 0)
warning("No 0 values in 'x'.")
n <- length(x)
phat <- r/n
method <- match.arg(method)
switch(method, mvue = {
if (r == n) {
mean.zmlnorm <- 0
sd.zmlnorm <- 0
mean.ln <- NA
cv.ln <- NA
mean.y <- NA
sd.y <- NA
} else {
x.pos <- x[x > 0]
y <- log(x.pos)
mean.y <- mean(y)
sd.y <- sd(y)
if (r == (n - 1)) {
mean.zmlnorm <- x.pos/n
sd.zmlnorm <- x.pos/sqrt(n)
mean.ln <- x.pos
cv.ln <- NA
} else {
params.ln <- elnormAlt(x.pos)$parameters
mean.ln <- params.ln["mean"]
cv.ln <- params.ln["cv"]
mean.zmlnorm <- (1 - phat) * mean.ln
s2 <- sd.y^2
sd.zmlnorm <- sqrt((1 - phat) * exp(2 * mean.y) *
(finneys.g(n - r - 1, 2 * s2) - ((1 - r/(n -
1)) * finneys.g(n - r - 1, ((n - r - 2) *
s2)/(n - r - 1)))))
}
}
})
cv.zmlnorm <- sd.zmlnorm/mean.zmlnorm
dist.params <- c(mean.ln, cv.ln, phat, mean.zmlnorm, cv.zmlnorm)
names(dist.params) <- c("mean", "cv", "p.zero", "mean.zmlnorm",
"cv.zmlnorm")
ret.list <- list(distribution = "Zero-Modified Lognormal (Delta)",
sample.size = n, parameters = dist.params, n.param.est = 3,
method = method, data.name = data.name, bad.obs = bad.obs)
if (ci) {
if (n < 3 || r == n)
warning(paste("Cannot compute confidence interval. ",
"You must have at least three non-missing observations,",
"and at least one observation must be non-zero."))
else {
ci.type <- match.arg(ci.type, c("two-sided", "lower",
"upper"))
if (conf.level <= 0 || conf.level >= 1)
stop("The value of 'conf.level' must be between 0 and 1")
avar.mean.zmlnorm <- (exp(2 * mean.y + sd.y^2) *
(1 - phat) * (phat + 0.5 * (2 * sd.y^2 + sd.y^4)))/n
ci.obj <- ci.normal.approx(mean.zmlnorm, sqrt(avar.mean.zmlnorm),
n = n, df = n - 2, ci.type = ci.type, alpha = 1 -
conf.level, lb = 0)
ci.obj$parameter <- "mean.zmlnorm"
ret.list <- c(ret.list, list(interval = ci.obj))
}
}
oldClass(ret.list) <- "estimate"
ret.list
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.