Nothing
swGofTest <-
function (x, distribution = "norm", est.arg.list = NULL)
{
if (!is.vector(x, mode = "numeric") || is.factor(x))
stop("'x' must be a numeric vector")
data.name <- deparse(substitute(x))
if ((bad.obs <- sum(!(x.ok <- is.finite(x)))) > 0) {
is.not.finite.warning(x)
x <- x[x.ok]
warning(paste(bad.obs, "observations with NA/NaN/Inf in 'x' removed."))
}
distribution <- match.arg(distribution, c("norm", "lnorm",
"lnormAlt", "lnorm3", "zmnorm", "zmlnorm", "zmlnormAlt"))
if (any(distribution == c("lnorm", "lnormAlt")) && any(x <=
0))
stop("All values of 'x' must be positive for a lognormal distribution")
if (any(distribution == c("zmlnorm", "zmlnormAlt")) && any(x <
0))
stop(paste("All values of 'x' must be non-negative for a",
"zero-modified lognormal distribution"))
n <- switch(distribution, zmnorm = sum(x != 0), zmlnorm = ,
zmlnormAlt = sum(x > 0), length(x))
if (distribution == "lnorm3") {
if (n < 5 || length(unique(x)) < 3)
stop(paste("'x' must contain at least 5 non-missing values,",
"and at least 3 distinct values."))
if (n > 2000)
warning(paste("Too many observations. This approximation only works",
"if the number of observations is between 5 and 2000"))
}
else {
if (n < 4 || length(unique(x)) < 2)
stop(paste("'x' must contain at least 4 non-missing values,",
"and at least 2 distinct values."))
if (n > 5000)
warning(paste("Too many observations. This approximation only works",
"if the number of observations is between 4 and 5000"))
}
if (distribution == "lnorm3")
ret.list <- elnorm3(x, method = "zero.skew")
else {
est.fcn <- paste("e", distribution, sep = "")
ret.list <- do.call(est.fcn, c(list(x = x), est.arg.list))
}
nrl <- names(ret.list)
names(ret.list)[match("parameters", nrl)] <- "distribution.parameters"
names(ret.list)[match("method", nrl)] <- "estimation.method"
ret.list$data.name <- data.name
ret.list$bad.obs <- bad.obs
ret.list$dist.abb <- distribution
new.x <- switch(distribution, norm = sort(x), lnorm = , lnormAlt = sort(log(x)),
lnorm3 = sort(log(x - ret.list$distribution.parameters["threshold"])),
zmnorm = sort(x[x != 0]), zmlnorm = , zmlnormAlt = sort(log(x[x >
0])))
W <- swGofTestStatistic(new.x)
if (n <= 11) {
gam <- -2.273 + 0.459 * n
w <- -log(gam - log(1 - W))
mu <- 0.544 - 0.39978 * n + 0.025054 * n^2 - 0.0006714 *
n^3
sigma <- exp(1.3822 - 0.77857 * n + 0.062767 * n^2 -
0.0020322 * n^3)
}
else {
w <- log(1 - W)
y <- log(n)
mu <- -1.5861 - 0.31082 * y - 0.083751 * y^2 + 0.0038915 *
y^3
sigma <- exp(-0.4803 - 0.082676 * y + 0.0030302 * y^2)
}
z <- (w - mu)/sigma
if (distribution == "lnorm3") {
u <- log(n)
sdlog <- ret.list$distribution.parameters["sdlog"]
v <- u * (sdlog - sdlog^2)
if (n <= 11) {
mu.z <- -3.8267 + 2.8242 * u - 0.63673 * u^2 - 0.020815 *
v
sigma.z <- -4.9914 + 8.6724 * u - 4.27905 * u^2 +
0.7035 * u^3 - 0.013431 * v
}
else {
mu.z <- -3.7796 + 2.4038 * u - 0.6675 * u^2 + 0.082863 *
u^3 - 0.0037935 * u^4 - 0.027027 * v - 0.0019887 *
v * u
sigma.z <- 2.1924 - 1.0957 * u + 0.33737 * u^2 -
0.043201 * u^3 + 0.0019974 * u^4 - 0.0053312 *
v * u
}
z <- (z - mu.z)/sigma.z
}
p <- 1 - pnorm(z)
ret.list <- c(ret.list, list(statistic = W, parameters = n,
z.value = z, p.value = p, alternative = paste("True cdf does not equal the\n",
space(33), ret.list$distribution, " Distribution.",
sep = ""), method = "Shapiro-Wilk GOF", data = x))
names(ret.list$statistic) <- "W"
names(ret.list$parameters) <- "n"
ret.list <- ret.list[c("distribution", "dist.abb", "distribution.parameters",
"n.param.est", "estimation.method", "statistic", "sample.size",
"parameters", "z.value", "p.value", "alternative", "method",
"data", "data.name", "bad.obs")]
oldClass(ret.list) <- "gof"
ret.list
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.