Nothing
process_si_data <- function(si_data) {
# NULL entries
if (is.null(si_data)) {
stop("Method si_from_data requires non NULL argument si_data")
}
# wrong number of columns
si_data <- as.data.frame(si_data)
num_cols <- dim(si_data)[2]
if (num_cols < 4 || num_cols > 5) {
stop("si_data should have 4 or 5 columns")
}
# entries with incorrect column names
if (!all(c("EL", "ER", "SL", "SR") %in% names(si_data))) {
names <- c("EL", "ER", "SL", "SR", "type")
names(si_data) <- names[seq_len(num_cols)]
warning("column names for si_data were not as expected; they were
automatically interpreted as 'EL', 'ER', 'SL', 'SR', and 'type'
(the last one only if si_data had five columns). ")
}
# non integer entries in date columns
if (!all(vlapply(seq_len(4), function(e) class(si_data[, e]) == "integer"))) {
stop("si_data has entries for which EL, ER, SL or SR are non integers.")
}
# entries with wrong order in lower and upper bounds of dates
if (any(si_data$ER - si_data$EL < 0)) {
stop("si_data has entries for which ER<EL.")
}
if (any(si_data$SR - si_data$SL < 0)) {
stop("si_data has entries for which SR<SL.")
}
# entries with negative serial interval
if (any(si_data$SR - si_data$EL <= 0)) {
stop("You cannot fit any of the supported distributions to this SI dataset,
because for some data points the maximum serial interval is <=0.")
}
## check that the types [0: double censored, 1; single censored,
## 2: exact observation] are correctly specified, and if not present
## put them in.
tmp_type <- 2 - rowSums(cbind(si_data$ER - si_data$EL != 0,
si_data$SR - si_data$SL != 0))
if (!("type" %in% names(si_data))) {
warning("si_data contains no 'type' column. This is inferred automatically
from the other columns.")
si_data$type <- tmp_type
} else if (any(is.na(si_data$type)) | !all(si_data$type == tmp_type)) {
warning("si_data contains unexpected entries in the 'type' column. This is
inferred automatically from the other columns.")
si_data$type <- tmp_type
}
return(si_data)
}
process_I <- function(incid) {
# If the input is an incidence object, we want to convert it to a data frame
# that EpiEstim understands, which contains a single column for the I counts.
if (inherits(incid, "incidence")) {
I_inc <- incid
incid <- as.data.frame(I_inc)
incid$I <- rowSums(incidence::get_counts(I_inc))
}
vector_I <- FALSE
single_col_df_I <- FALSE
if (is.vector(incid)) {
vector_I <- TRUE
} else if (is.data.frame(incid)) {
if (ncol(incid) == 1) {
single_col_df_I <- TRUE
}
}
if (vector_I | single_col_df_I) {
if (single_col_df_I) {
I_tmp <- incid[[1]]
} else {
I_tmp <- incid
}
incid <- data.frame(local = I_tmp, imported = rep(0, length(I_tmp)))
I_init <- sum(incid[1, ])
incid[1, ] <- c(0, I_init)
} else {
if (!is.data.frame(incid) |
(!("I" %in% names(incid)) &
!all(c("local", "imported") %in% names(incid)))) {
stop("incid must be a vector or a dataframe with either i) a column
called 'I', or ii) 2 columns called 'local' and 'imported'.")
}
if (("I" %in% names(incid)) &
!all(c("local", "imported") %in% names(incid))) {
incid$local <- incid$I
incid$local[1] <- 0
incid$imported <- c(incid$I[1], rep(0, nrow(incid) - 1))
}
if (incid$local[1] > 0) {
warning("incid$local[1] is >0 but must be 0, as all cases on the first
time step are assumed imported. This is corrected automatically
by cases being transferred to incid$imported.")
I_init <- sum(incid[1, c("local", "imported")])
incid[1, c("local", "imported")] <- c(0, I_init)
}
}
incid[which(is.na(incid))] <- 0
date_col <- names(incid) == "dates"
if (any(date_col)) {
if (any(incid[, !date_col] < 0)) {
stop("incid must contain only non negative integer values.")
}
} else {
if (any(incid < 0)) {
stop("incid must contain only non negative integer values.")
}
}
return(incid)
}
process_I_vector <- function(incid) {
# here, the incident counts are being forced into a vector.
if (inherits(incid, "incidence")) {
incid <- rowSums(incidence::get_counts(incid))
}
if (!is.vector(incid)) {
if (is.data.frame(incid)) {
if (ncol(incid) == 1) {
incid <- as.vector(incid[, 1])
} else if ("I" %in% names(incid)) {
incid <- as.vector(incid$I)
} else if (!all(c("local", "imported") %in% names(incid))) {
stop("incid must be a vector or a dataframe with at least a column named
'I' or two columns named 'local' and 'imported'.")
}
} else {
stop("incid must be a vector or a dataframe with at least a column named
'I' or two columns named 'local' and 'imported'.")
}
}
incid[which(is.na(incid))] <- 0
date_col <- names(incid) == "dates"
if (any(date_col)) {
if (any(incid[, !date_col] < 0)) {
stop("incid must contain only non negative integer values.")
}
} else {
if (any(incid < 0)) {
stop("incid must contain only non negative integer values.")
}
}
return(incid)
}
process_si_sample <- function(si_sample) {
if (is.null(si_sample)) {
stop("method si_from_sample requires to specify the si_sample argument.")
}
si_sample <- as.matrix(si_sample)
if (any(si_sample[1, ] != 0)) {
stop("method si_from_sample requires that si_sample[1,] contains only 0.")
}
if (any(si_sample < 0)) {
stop("method si_from_sample requires that si_sample must contain only non
negtaive values.")
}
if (any(abs(colSums(si_sample) - 1) > 0.01)) {
stop("method si_from_sample requires the sum of each column in si_sample to
be 1.")
}
return(si_sample)
}
check_times <- function(t_start, t_end, T)
## this only produces warnings and errors, does not return anything
{
if (!is.vector(t_start)) {
stop("t_start must be a vector.")
}
if (!is.vector(t_end)) {
stop("t_end must be a vector.")
}
if (length(t_start) != length(t_end)) {
stop("t_start and t_end must have the same length.")
}
if (any(t_start > t_end)) {
stop("t_start[i] must be <= t_end[i] for all i.")
}
if (any(t_start < 2 | t_start > T | t_start %% 1 != 0)) {
stop("t_start must be a vector of integers between 2 and the number of
timesteps in incid.")
}
if (any(t_end < 2 | t_end > T | t_end %% 1 != 0)) {
stop("t_end must be a vector of integers between 2 and the number of
timesteps in incid.")
}
}
check_si_distr <- function(si_distr, sumToOne = c("error", "warning"),
method = "non_parametric_si")
## this only produces warnings and errors, does not return anything
{
sumToOne <- match.arg(sumToOne)
if (is.null(si_distr)) {
stop(paste0("si_distr argument is missing but is required for method ",
method, "."))
}
if (!is.vector(si_distr)) {
stop("si_distr must be a vector.")
}
if (si_distr[1] != 0) {
stop("si_distr should be so that si_distr[1] = 0.")
}
if (any(si_distr < 0)) {
stop("si_distr must be a positive vector.")
}
if (abs(sum(si_distr) - 1) > 0.01) {
if (sumToOne == "error") {
stop("si_distr must sum to 1.")
}
else if (sumToOne == "warning") {
warning("si_distr does not sum to 1.")
}
}
}
check_dates <- function(incid) {
dates <- incid$dates
if (class(dates) != "Date" & class(dates) != "numeric") {
stop("incid$dates must be an object of class date or numeric.")
} else {
if (unique(diff(dates)) != 1) {
stop("incid$dates must contain dates which are all in a row.")
} else {
return(dates)
}
}
}
process_config <- function(config) {
if (!("mean_prior" %in% names(config))) {
config$mean_prior <- 5
}
if (!("std_prior" %in% names(config))) {
config$std_prior <- 5
}
if (config$mean_prior <= 0) {
stop("config$mean_prior must be >0.")
}
if (config$std_prior <= 0) {
stop("config$std_prior must be >0.")
}
if (!("cv_posterior" %in% names(config))) {
config$cv_posterior <- 0.3
}
if (!("mcmc_control" %in% names(config))) {
config$mcmc_control <- make_mcmc_control()
}
return(config)
}
process_config_si_from_data <- function(config, si_data) {
config$si_parametric_distr <- match.arg(
config$si_parametric_distr,
c("G", "W", "L", "off1G", "off1W", "off1L")
)
if (is.null(config$n1)) {
stop("method si_from_data requires to specify the config$n1 argument.")
}
if (is.null(config$n2)) {
stop("method si_from_data requires to specify the config$n2 argument.")
}
if (config$n2 <= 0 || config$n2 %% 1 != 0) {
stop("method si_from_data requires a >0 integer value for config$n2.")
}
if (config$n1 <= 0 || config$n1 %% 1 != 0) {
stop("method si_from_data requires a >0 integer value for config$n1.")
}
if (is.null(config$mcmc_control$init_pars)) {
config$mcmc_control$init_pars <-
init_mcmc_params(si_data, config$si_parametric_distr)
}
if ((config$si_parametric_distr == "off1G" |
config$si_parametric_distr == "off1W" |
config$si_parametric_distr == "off1L") &
any(si_data$SR - si_data$EL <= 1)) {
stop(paste(
"You cannot fit a distribution with offset 1 to this SI",
"dataset, because for some data points the maximum serial",
"interval is <=1.\nChoose a different distribution"
))
}
return(config)
}
check_config <- function(config, method) {
if (method == "non_parametric_si") {
check_si_distr(config$si_distr, method = method)
}
if (method == "parametric_si") {
if (is.null(config$mean_si)) {
stop("method parametric_si requires to specify the config$mean_si
argument.")
}
if (is.null(config$std_si)) {
stop("method parametric_si requires to specify the config$std_si
argument.")
}
if (config$mean_si <= 1) {
stop("method parametric_si requires a value >1 for config$mean_si.")
}
if (config$std_si <= 0) {
stop("method parametric_si requires a >0 value for config$std_si.")
}
}
if (method == "uncertain_si") {
if (is.null(config$mean_si)) {
stop("method uncertain_si requires to specify the config$mean_si
argument.")
}
if (is.null(config$std_si)) {
stop("method uncertain_si requires to specify the config$std_si
argument.")
}
if (is.null(config$n1)) {
stop("method uncertain_si requires to specify the config$n1 argument.")
}
if (is.null(config$n2)) {
stop("method uncertain_si requires to specify the config$n2 argument.")
}
if (is.null(config$std_mean_si)) {
stop("method uncertain_si requires to specify the config$std_mean_si
argument.")
}
if (is.null(config$min_mean_si)) {
stop("method uncertain_si requires to specify the config$min_mean_si
argument.")
}
if (is.null(config$max_mean_si)) {
stop("method uncertain_si requires to specify the config$max_mean_si
argument.")
}
if (is.null(config$std_std_si)) {
stop("method uncertain_si requires to specify the config$std_std_si
argument.")
}
if (is.null(config$min_std_si)) {
stop("method uncertain_si requires to specify the config$min_std_si
argument.")
}
if (is.null(config$max_std_si)) {
stop("method uncertain_si requires to specify the config$max_std_si
argument.")
}
if (config$mean_si <= 0) {
stop("method uncertain_si requires a >0 value for config$mean_si.")
}
if (config$std_si <= 0) {
stop("method uncertain_si requires a >0 value for config$std_si.")
}
if (config$n2 <= 0 || config$n2 %% 1 != 0) {
stop("method uncertain_si requires a >0 integer value for config$n2.")
}
if (config$n1 <= 0 || config$n1 %% 1 != 0) {
stop("method uncertain_si requires a >0 integer value for config$n1.")
}
if (config$std_mean_si <= 0) {
stop("method uncertain_si requires a >0 value for config$std_mean_si.")
}
if (config$min_mean_si < 1) {
stop("method uncertain_si requires a value >=1 for config$min_mean_si.")
}
if (config$max_mean_si < config$mean_si) {
stop("method uncertain_si requires that config$max_mean_si >=
config$mean_si.")
}
if (config$mean_si < config$min_mean_si) {
stop("method uncertain_si requires that config$mean_si >=
config$min_mean_si.")
}
if (signif(config$max_mean_si - config$mean_si, 3) != signif(config$mean_si -
config$min_mean_si, 3)) {
warning("The distribution you chose for the mean SI is not centered around
the mean.")
}
if (config$std_std_si <= 0) {
stop("method uncertain_si requires a >0 value for config$std_std_si.")
}
if (config$min_std_si <= 0) {
stop("method uncertain_si requires a >0 value for config$min_std_si.")
}
if (config$max_std_si < config$std_si) {
stop("method uncertain_si requires that config$max_std_si >=
config$std_si.")
}
if (config$std_si < config$min_std_si) {
stop("method uncertain_si requires that config$std_si >=
config$min_std_si.")
}
if (signif(config$max_std_si - config$std_si, 3) != signif(config$std_si -
config$min_std_si, 3)) {
warning("The distribution you chose for the std of the SI is not centered
around the mean.")
}
}
if (config$cv_posterior < 0) {
stop("config$cv_posterior must be >0.")
}
}
viapply <- function(X, FUN, ...) {
vapply(X, FUN, integer(1), ...)
}
vlapply <- function(X, FUN, ...) {
vapply(X, FUN, logical(1), ...)
}
vnapply <- function(X, FUN, ...) {
vapply(X, FUN, numeric(1), ...)
}
vcapply <- function(X, FUN, ...) {
vapply(X, FUN, character(1), ...)
}
## This function was contributed by Rich Fitzjohn. It modifies default arguments
## using user-provided values. The argument 'strict' triggers and error
## behaviour: if strict==TRUE: all new values need to be part of the defaults.
modify_defaults <- function(defaults, x, strict = TRUE) {
extra <- setdiff(names(x), names(defaults))
if (strict && (length(extra) > 0L)) {
stop("Additional invalid options: ", paste(extra, collapse=", "))
}
utils::modifyList(defaults, x, keep.null = TRUE) # keep.null is needed here
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.