R/aregImpute.s

Defines functions aregImpute

Documented in aregImpute

aregImpute <- function(formula, data, subset, n.impute=5,
                       group=NULL, nk=3, tlinear=TRUE,
                       type=c('pmm','regression','normpmm'), pmmtype=1,
                       match=c('weighted','closest','kclosest'),
                       kclosest=3, fweighted=0.2, curtail=TRUE, constraint=NULL,
                       boot.method=c('simple', 'approximate bayesian'),
                       burnin=3, x=FALSE,
                       pr=TRUE, plotTrans=FALSE,
                       tolerance=NULL, B=75) {
  
  acall   <- match.call()
  type    <- match.arg(type)
  match   <- match.arg(match)
  boot.method <- match.arg(boot.method)
  if(pmmtype %nin% 1:3) stop('pmmtype must be 1, 2, or 3')
  if(pmmtype == 3) boot.method <- 'approximate bayesian'
  lgroup <- length(group)
  if(type == 'normpmm' && lgroup)
    stop('group makes no sense when type="normpmm"')
  if(type == 'normpmm' && ! tlinear)
    stop('type="normpmm" not implemented when tlinear=FALSE because no covariance matrix is available for right hand side beta for first canonical variate')
  if(length(constraint) && type != 'pmm')
    stop("constraint only works with type='pmm'")
  
  if(! inherits(formula,'formula'))
    stop('formula must be a formula')
  
  nam <- all.vars(formula)
  
  m <- match.call(expand.dots = FALSE)
  Terms <- terms(formula, specials='I')
  m$formula <- formula
  m$match <- m$fweighted <- m$curtail <- m$x <- m$n.impute <- m$nk <-
    m$tlinear <- m$burnin <- m$type <- m$pmmtype <- m$group <- m$pr <-
      m$plotTrans <- m$tolerance <- m$boot.method <- m$B <- m$constraint <- NULL
  m$na.action <- na.retain

  m[[1]] <- as.name("model.frame")
  z <- eval(m, sys.parent())
  p <- length(z)
  n <- nrow(z)
  rnam <- row.names(z)
  if(length(rnam) == 0) rnam <- as.character(1:n)

  if(lgroup) {
    if(boot.method == 'approximate bayesian')
      stop('group not implemented for boot.method="approximate bayesian"')
    if(lgroup != n)
      stop('group should have length equal to number of observations')
    
    ngroup <- length(unique(group[! is.na(group)]))
  }

  linear <- nam[attr(Terms,'specials')$I]

  cat.levels <- vector('list',p)
  names(cat.levels) <- nam
  vtype <- rep('s', p); names(vtype) <- nam
  dof <- rep(NA, p); names(dof) <- nam
  na <- vector('list',p)
  names(na) <- nam
  nna <- integer(p); names(nna) <- nam

  xf <- matrix(as.double(1), nrow=n, ncol=p, dimnames=list(rnam,nam))
  imp <- vector('list',p)
  names(imp) <- nam
  if(lgroup) group.inds <- imp

  for(i in 1:p) {
    xi <- z[[i]]
    ni <- nam[i]
    nai <- is.na(xi)
    na[[i]] <- (1:n)[nai] 
    nna[i] <- nnai <- sum(nai)
    if(nnai > 0) imp[[ni]] <-  matrix(NA, nrow=nnai, ncol=n.impute,
                                      dimnames=list(rnam[nai],NULL))
    if(lgroup) {
      if(any(is.na(group[! nai])))
        stop('NAs not allowed in group')
      
      if(length(unique(group[! nai])) != ngroup)
        stop(paste('not all',ngroup,
                   'values of group are represented in\n',
                   'observations with non-missing values of',
                   ni))
      group.inds[[i]] <- split((1:n)[! nai], group[! nai])
    }
    
    iscat <- FALSE
    if(is.character(xi)) {
      xi <- as.factor(xi)
      lev <- levels(xi)
      iscat <- TRUE
    } else if(is.factor(xi)) {
      lev <- levels(xi)
      iscat <- TRUE
    }
    if(iscat) {
      if(length(lev) < 2) stop(paste(ni,'is constant'))
      tab <- table(xi)
      if(any(tab == 0))
        stop(paste(ni,'has the following levels with no observations:',
                   paste(names(tab)[tab == 0],collapse=' ')))
      if(any(tab < 5))
        warning(paste(ni,'has the following levels with < 5 observations:',
                      paste(names(tab)[tab < 5],collapse=' '),
                      '\nConsider using the group parameter to balance bootstrap samples'))
      cat.levels[[ni]] <- lev
      xi <- as.integer(xi)
      vtype[ni] <- 'c'
    }
    else {
      u <- unique(xi[! nai])
      if(length(u) == 1)
        stop(paste(ni,'is constant'))
      else
        if((length(nk) == 1 && nk == 0) || length(u) == 2 || ni %in% linear)
          vtype[ni] <- 'l'
    }
    xf[,i] <- xi
    
    ## Initialize imputed values to random sample of non-missings
    if(nnai > 0) xf[nai, i] <-
      sample(xi[! nai], nnai, replace=nnai > (n-nnai))
  }

  Countqual <- NULL
  if(length(constraint)) {
    ## Define a list of lists of vectors
    ## For each target variable referenced in constraint, make a list
    ## having as each of its elements corresponding to missing observations
    ## on the target variable, with the element containing a list of
    ## row numbers of the set of non-missing target variables with
    ## corresponding original data meeting the constraint
    ## Expressions within constraint must reference a single target (recipient)
    ## observation using r$ followed by original variable names (and
    ## expecting their original coding) and vectors of donor observation
    ## variable values using d$ followed by original variable names (and
    ## expecting their original coding also).
    cons <- Countqual <- vector('list', length(constraint))
    ncons <- names(constraint)
    names(cons) <- names(Countqual) <- ncons
    if(any(duplicated(ncons)))
      stop('constraint contains duplicate entries for a variable')

    for(v in ncons) {
      if(v %nin% names(z)) stop('variable ', v, ' in constraint not in data')
      xi   <- z[, v]
      nai  <- which(is.na(xi))
      nnai <- length(nai)
      if(! nnai) warning('variable ', v, ' is in constraints but has no NAs')
      j <- which(! is.na(xi))
      if(! length(j)) stop('variable ', v, ' has no non-missing values')
      w <- vector('list', nnai)
      ## Get data frame of donors
      d <- z[- nai, , drop=FALSE]
      countqual <- integer(nnai)
      jj <- 0
      conv <- constraint[[v]]
      for(l in nai) {
        jj <- jj + 1
        r <- z[l, , drop=FALSE]   # single original data row
        qual <- eval(conv)  # must evaluate to have # rows = # non-NA on xi
        if(! is.logical(qual) || (length(qual) != nrow(d)))
          stop('result of constraint expression for ', v,
               ' is not a logical vector of length equal to number of ',
               ' rows in donor data frame d')
        if(any(is.na(qual)))
          stop('result of constraint expression for ', v, ' contains an NA')
        countqual[jj] <- sum(qual)
        if(! any(qual)) {
          cat('\nFor the following observation with a missing target variable value\n\n')
          print(r)
          stop('No observations meet the constraint for variable ', v,
               ' with constraint ', conv)
        }
        ## w elements are indexed 1, 2, 3, ... for 1st, 2nd, 3rd, ...
        ## row where target xi was NA
        ## Vector value of a w element is indexed to row numbers of
        ## dataset after removing ALL rows with NA in xi
        w[[jj]] <- which(qual)
      }
      cons[[v]]      <- w
      Countqual[[v]] <- countqual
    }
  }
  
  z <- NULL
  wna <- (1:p)[nna > 0]
  if(length(wna) < 2 && missing(burnin)) burnin <- 0
  nu <- apply(xf, 2, function(z)length(unique(z)))

  
  ## xf = original data matrix (categorical var -> integer codes)
  ## with current imputations
  rsq <- double(length(wna));
  names(rsq) <- nam[wna]
  resampacc <- list()
  if(curtail) xrange <- apply(xf, 2, range)
  fits <- NULL
  
  ## Compute vector of subscripts of the first argument corresponding
  ## to closest match of values of second argument, for PMM
  ## Both arguments represent predicted transformed values
  ## Returned vector has length = length(precip)
  nearest <-
    switch(match,
           kclosest = function(x, y) whichClosek (x, y, k=kclosest),
           closest  = function(x, y) whichClosest(x, y),
           weighted = function(x, y) whichClosePW(x, y, f=fweighted) )
   
  findclose <- function(pdonor, precip, v) {
    if(! length(constraint) || v %nin% names(constraint))
      return(nearest(pdonor, precip))

    ## When constraint is to be applied, different target observations
    ## may have different donor observations taken out of consideration
    ## due to constraints, so we need to find closest matches
    ## individually by target (missing) observations
    ## Non-qualifying donor observations have 1000 replacing their
    ## predicted values so that they will not be found as nearest
    ## matches
    co <- cons[[v]]
    nrecipients <- length(precip)
    found       <- integer(nrecipients)
    ## Elements of co are indexed by 1, 2, 3, ... for 1st, 2nd, 3rd, ...
    ## row in which target variable was NA
    ## Values of an element of co are row numbers after subsetting
    ## original dataset to non-NA target variable values
    for(i in 1 : nrecipients) {
      qualifying <- co[[i]]
      pd <- pdonor
      pd[- qualifying] <- 1000.
      found[i] <- nearest(pd, precip[i])
    }
    if(any(pdonor[found] == 1000.)) {
      z <- list(pdonor=pdonor, precip=precip, v=v, qualifying=qualifying)
      tf <- tempfile()
      saveRDS(z, file=tf)
      stop('program logic error 5 for constrained variable ', v,
           ' data saved in file ', tf)
      }
    found
  }


  for(iter in 1:(burnin + n.impute)) {
    if(pr) cat('Iteration',iter,'\r')
    ## wna = indexes of variables with > 0 NAs
    for(i in wna) {       ## i=target variable (recipient)
      nai <- na[[i]]      ## subscripts of NAs on xf[,i]
      j <- (1:n)[-nai]    ## subscripts of non-NAs on xf[,i]
      npr <- length(j)
      ytype <- if(tlinear && vtype[i] == 's')'l' else vtype[i]
      
      if(iter == (burnin + n.impute) && length(nk) > 1) {
        rn <- c('Bootstrap bias-corrected R^2',
                '10-fold cross-validated  R^2',
                'Bootstrap bias-corrected mean   |error|',
                '10-fold cross-validated  mean   |error|',
                'Bootstrap bias-corrected median |error|',
                '10-fold cross-validated  median |error|')
        racc <- matrix(NA, nrow=6, ncol=length(nk),
                       dimnames=list(rn, paste('nk=', nk, sep='')))
        jj <- 0
        for(k in nk) {
          jj <- jj + 1
          f <- areg(xf[,-i,drop=FALSE], xf[,i],
                    xtype=vtype[-i], ytype=ytype,
                    nk=k, na.rm=FALSE,
                    tolerance=tolerance, B=B, crossval=10)
          w <- c(f$r2boot, f$rsquaredcv, f$madboot, f$madcv,
                 f$medboot, f$medcv)
          racc[,jj] <- w
        }
        resampacc[[nam[i]]] <- racc
      }
      
      if(lgroup) {
        ## insure orig. no. obs from each level of group
        s <- rep(NA, npr)
        for(ji in 1:ngroup) {
          gi <- (group.inds[[i]])[[ji]]
          s[gi] <- sample(gi, length(gi), replace=TRUE)
        }
        s <- s[! is.na(s)]
      }
      else { ## sample of non-NAs
        if(type == 'normpmm') s <- j
        else {
          # Sample subscripts of all non-NA xi
          s <- sample(j, npr, replace=TRUE)
          if(boot.method == 'approximate bayesian') {
            sorig <- s
            s <- sample(s, replace=TRUE)
          }
        }
      }
      nami <- nam[i]
      nm <- c(nami, nam[-i])

      if(type != 'normpmm') {
        xch <- which(vtype == 'c')
        if(length(xch)) {
          nus <- apply(xf[s, xch, drop=FALSE], 2,
                       function(z)length(unique(z)))
          xtf <- nus < nu[xch]
          if(any(xtf))
            stop(paste('a bootstrap resample had too few unique values of the following variables:',paste(nam[xch[xtf]],collapse=','),sep='\n'))
        }
      }
          
      X <- xf[,-i,drop=FALSE]   # non-target variables (donors)

      ## If there is only one variable that has any NAs, fits on
      ## non-bootstrapped samples will not vary across multiple imputations.
      ## Otherwise, fits vary because across the multiple imputations,
      ## predictors are updated from previous spells as target variables
      if(type == 'normpmm' && length(wna) < 2) {
        if(iter == 1)
          fits[[i]] <- f <-
            areg(X[s,], xf[s,i], xtype=vtype[-i], ytype=ytype,
                 nk=min(nk), na.rm=FALSE, tolerance=tolerance)
        else f <- fits[[i]]
      }
      else f <- areg(X[s,], xf[s,i], xtype=vtype[-i], ytype=ytype,
                     nk=min(nk), na.rm=FALSE, tolerance=tolerance)
      xdf          <- f$xdf
      dof[nam[-i]] <- xdf
      dof[nami]    <- f$ydf
      
      if(plotTrans) plot(f)
      
      rsq[nami] <- f$rsquared
      ## residuals off of transformed predicted values
      res <- f$residuals

      pti <- predict(f, X)  # predicted transformed xf[,i], all observations
      ## if type is normpmm only those elements corresponding to
      ## complete cases are used

      if(type == 'normpmm') {
        xpxi <- f$xpxi
        if(! length(xpxi)) stop('type="normpmm" cannot be used when any variable needing imputation is categorical or nonlinear')
        ## See mice package .norm.draw function
        px <- sum(xdf)
        sigma.star <- sqrt(sum(res^2)/rchisq(1, length(res) - px))
        beta.star <- f$xcoefficients + t(chol(xpxi)) %*% rnorm(1 + px) *
          sigma.star
        pti[nai] <- predict(f, X[nai,,drop=FALSE], type='x') %*% beta.star
      } else if(type == 'pmm') {
        if(pmmtype %in% c(1,3)) {
          ## Match predicted complete cases using non-bootstrap
          ## beta with incomplete cases using bootstrap beta
          ## For pmmtype=3 use bootstrap vs. sample w/replacement bootstrap
          ss <- if(pmmtype == 1) j else sorig
          g <- areg(X[ss,], xf[ss,i], xtype=vtype[-i], ytype=ytype,
                    nk=min(nk), na.rm=FALSE, tolerance=tolerance)
          ## This would not need to be run fresh at each mult. imp.
          ## iteration if only one variable were ever NA
          pti[j] <- predict(g, X[j,])
        }
      }
      
      if(type != 'regression') {
        if(ytype == 'l') pti <- (pti - mean(pti)) / sqrt(var(pti))
        ## Jitter predicted transformed values for non-NAs to randomly
        ## break ties in matching with predictions for NAs in xf[,i]
        ## Because of normalization used by fitter, pti usually ranges
        ## from about -4 to 4
        if(match == 'closest') pti[j] <- pti[j] + runif(npr,-.0001,.0001)
        whichclose <- j[findclose(pti[j], pti[nai], nami)]
        ## j = non-NA rows   nai = NA rows on xi
        impi <- xf[whichclose, i]
      }
      else {  ## type='regression'
        ## predicted transformed target var + random sample of res,
        ## for NAs
        r <- sample(res, length(nai),
                    replace=length(nai) > length(res))
        ptir <- pti[nai] + r
        
        ## predicted random draws on untransformed scale
        impi <- f$yinv(ptir, what='sample', coef=f$ycoefficients)
        if(curtail) impi <- pmin(pmax(impi, xrange[1,i]), xrange[2,i])
      }
      xf[nai,i] <- impi
      if(iter > burnin) imp[[nam[i]]][,iter-burnin] <- impi
    }
  }
  if(pr)
    cat('\n')
  
  if(! x) xf <- NULL
  
  structure(list(call=acall, formula=formula,
                 match=match, fweighted=fweighted, pmmtype=pmmtype,
                 constraint=constraint, countqual=Countqual,
                 n=n, p=p, na=na, nna=nna,
                 type=vtype, tlinear=tlinear, nk=min(nk),
                 cat.levels=cat.levels, df=dof,
                 n.impute=n.impute, imputed=imp, x=xf, rsq=rsq,
                 resampacc=resampacc),
            class='aregImpute')
}

print.aregImpute <- function(x, digits=3, ...) {
  cat("\nMultiple Imputation using Bootstrap and PMM\n\n")
  dput(x$call)
  cat("\n")
  cat('n:',x$n,'\tp:',x$p,
      '\tImputations:',x$n.impute,' \tnk:',x$nk,'\n')
  cat('\nNumber of NAs:\n'); print(x$nna); cat('\n')
  info <- data.frame(type=x$type, d.f.=x$df,
                     row.names=names(x$type))
  print(info)
  if(x$tlinear)
    cat('\nTransformation of Target Variables Forced to be Linear\n')
  
  cat('\nR-squares for Predicting Non-Missing Values for Each Variable\nUsing Last Imputations of Predictors\n')
  print(round(x$rsq, digits))

  racc <- x$resampacc
  if(length(racc)) {
    cat('\nResampling results for determining the complexity of imputation models\n\n')
    for(i in 1:length(racc)) {
      cat('Variable being imputed:', names(racc)[i], '\n')
      print(racc[[i]], digits=digits)
      cat('\n')
    }
    cat('\n')
  }
  cq <- x$countqual
  if(length(cq)) {
    cat('\nFrequency distributions of number of potential donor observations\nmeeting constraints\n\n')
    for(v in names(cq)) {
      cat(v, '\n')
      print(table(cq[[v]]))
      cat('\n')
      }
    }
  invisible()
}

plot.aregImpute <- function(x, nclass=NULL, type=c('ecdf','hist'),
                            datadensity=c("hist","none","rug","density"),
                            diagnostics=FALSE, maxn=10, ...) {
  type <- match.arg(type)
  datadensity <- match.arg(datadensity)
  i <- x$imputed
  catg <- x$categorical
  lev  <- x$cat.levels
  n.impute <- x$n.impute
  for(n in names(i)) {
    xi <- i[[n]]
    if(! length(xi))
      next
    
    if(diagnostics) {
      r <- range(xi)
      for(j in 1:min(maxn,nrow(xi))) {
        plot(1:n.impute, xi[j,], ylim=r, xlab='Imputation',
             ylab=paste("Imputations for Obs.",j,"of",n))
      }
    }
    
    ix <- as.vector(i[[n]])
    lab <- paste('Imputed',n)
    if(n %in% catg) {
      tab <- table(ix)
      dotchart3(tab, lev[[n]], auxdata=tab, xlab='Frequency',
                ylab=lab)
    }
    else {
      if(type == 'ecdf')
        Ecdf(ix, xlab=lab, datadensity=datadensity, subtitles=FALSE)
      else {
        if(length(nclass))
          hist(ix, xlab=n, nclass=nclass, main='')
        else
          hist(ix, xlab=lab, main='')
        scat1d(ix)
      }
    }
  }
  invisible()
}

Try the Hmisc package in your browser

Any scripts or data that you put into this service are public.

Hmisc documentation built on June 22, 2024, 12:19 p.m.