Nothing
###########################################################################
# Consort #
# #
# The purpose of the Consort function is to consort with Laplace's Demon #
# regarding an object of class demonoid. #
###########################################################################
Consort <- function(object=NULL)
{
if(is.null(object)) stop("The object argument is empty.")
if(!identical(class(object), "demonoid"))
stop("Consort requires an object of class demonoid.")
oname <- deparse(substitute(object))
dname <- as.vector(strsplit(as.character(object$Call), "=")[3][[1]])
cat("\n#############################################################\n")
cat("# Consort with Laplace's Demon #\n")
cat("#############################################################\n")
print.demonoid(object)
### Check Acceptance.Rate
Acc.Rate.Level <- 2
if((object$Algorithm == "Adaptive Hamiltonian Monte Carlo") |
(object$Algorithm == "Tempered Hamiltonian Monte Carlo")) {
L <- object$Specs[["L"]]
if(L == 1) {
Acc.Rate.Low <- 0.5
Acc.Rate.High <- 0.65}
else {
Acc.Rate.Low <- 0.6
Acc.Rate.High <- 0.7}}
else if(object$Algorithm %in% c("Adaptive Griddy-Gibbs",
"Automated Factor Slice Sampler",
"Elliptical Slice Sampler", "Griddy-Gibbs",
"Oblique Hyperrectangle Slice Sampler",
"Reflective Slice Sampler", "Slice Sampler",
"Stochastic Gradient Langevin Dynamics",
"Univariate Eigenvector Slice Sampler")) {
Acc.Rate.Low <- 1
Acc.Rate.High <- 1
}
else if(object$Algorithm == "Gibbs Sampler") {
if(is.null(object$Specs[["MWG"]]))
Acc.Rate.Low <- Acc.Rate.High <- 1
else {
Acc.Rate.Low <- 0.15
Acc.Rate.High <- 0.5}
}
else if((object$Algorithm == "Metropolis-Adjusted Langevin Algorithm")) {
Acc.Rate.Low <- 0.40
Acc.Rate.High <- 0.80
}
else if(object$Algorithm == "Hamiltonian Monte Carlo") {
L <- object$Specs[["L"]]
if(L == 1) {
Acc.Rate.Low <- 0.4
Acc.Rate.High <- 0.8}
else {
Acc.Rate.Low <- 0.6
Acc.Rate.High <- 0.7}
}
else if(object$Algorithm == "Hamiltonian Monte Carlo with Dual-Averaging") {
A <- object$Specs[["A"]]
delta <- object$Specs[["delta"]]
Lmax <- object$Specs[["Lmax"]]
lambda <- object$Specs[["lambda"]]
Acc.Rate.Low <- max(round(delta - 0.05, 2), 0.01)
Acc.Rate.High <- min(round(delta + 0.05, 2), 1)
}
else if(object$Algorithm == "No-U-Turn Sampler") {
A <- object$Specs[["A"]]
delta <- object$Specs[["delta"]]
Acc.Rate.Low <- max(round(delta - 0.05, 2), 0.01)
Acc.Rate.High <- min(round(delta + 0.05, 2), 1)
}
else if(object$Algorithm == "Refractive Sampler") {
m <- object$Specs[["m"]]
Acc.Rate.Low <- 0.6
Acc.Rate.High <- 0.7
}
else if((object$Algorithm %in% c("Reversible-Jump",
"Multiple-Try Metropolis"))) {
Acc.Rate.Low <- 0.10
Acc.Rate.High <- 0.90
}
else {
Acc.Rate.Low <- 0.15
Acc.Rate.High <- 0.5}
if(any(object$Acceptance.Rate == 0)) {
cat("\nWARNING: Acceptance Rate = 0\n\n")
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=100000, Status=1000, ",
"Thinning=100,\n", sep="")
cat(" Algorithm=\"AMM\", Specs=list(Adaptive=500, ",
"B=NULL, Periodicity=100, w=0.05))\n\n", sep="")
stop("Try the above code before consorting again.")}
if(any(object$Acceptance.Rate < Acc.Rate.Low)) {Acc.Rate.Level <- 1}
else if(any(object$Acceptance.Rate > Acc.Rate.High)) {Acc.Rate.Level <- 3}
LIV <- object$Parameters
### Check MCSE
MCSE.crit <- 0.0627
MCSE.temp <- object$Summary2[1:object$Parameters,"MCSE"] /
object$Summary2[1:LIV,"SD"]
MCSE.temp2 <- sum(!is.finite(MCSE.temp))
MCSE.temp[which(!is.finite(MCSE.temp))] <- 0
MCSE.tot <- 0
if(MCSE.temp2 < LIV)
MCSE.tot <- sum(MCSE.temp < MCSE.crit)
### Check ESS
ESS.temp <- object$Summary2[1:LIV,"ESS"]
ESS.temp[which(!is.finite(ESS.temp))] <- 0
ESS.min <- min(ESS.temp)
if(all(is.finite(object$Summary2[1:LIV,"ESS"])))
ESS.worst <- which.min(object$Summary2[1:LIV,"ESS"])
else ESS.worst <- which.min(object$Summary1[1:LIV,"ESS"])
ESS.crit <- 100
### Check Stationarity
Stationarity <- FALSE
if(object$Rec.BurnIn.Thinned < object$Thinned.Samples)
Stationarity <- TRUE
### Check Diminishing Adaptation (If Adaptive)
if(nrow(object$CovarDHis) > 1)
Dim.Adapt <- sum(diff(object$CovarDHis)) <= 0
else Dim.Adapt <- TRUE
### Suggested Values
Rec.Iterations <- trunc(object$Rec.Thinning / object$Thinning *
object$Iterations)
if(any(object$Acceptance.Rate == 0)) {
Rec.Adaptive <- round(LIV * 1.0E7)
Rec.Periodicity <- round(object$Rec.Thinning * 1.0E7)}
else if(all(object$Acceptance.Rate > 0)) {
Rec.Adaptive <- round(LIV / mean(object$Acceptance.Rate))
Rec.Periodicity <- round(object$Rec.Thinning /
mean(object$Acceptance.Rate))}
if(Rec.Adaptive > Rec.Iterations) Rec.Adaptive <- Rec.Iterations - 1
if(Rec.Periodicity > Rec.Iterations)
Rec.Periodicity <- Rec.Iterations - 1
Status.temp <- trunc(Rec.Iterations / {object$Minutes *
Rec.Iterations / object$Iterations})
if(Status.temp < Rec.Iterations) Rec.Status <- Status.temp
else Rec.Status <- trunc(sqrt(Rec.Iterations))
if(Rec.Status > Rec.Iterations) Rec.Status <- Rec.Iterations
Rec.Thinning <- object$Rec.Thinning
### The Demonic Suggestion of Laplace's Demon
cat("\nDemonic Suggestion\n\n")
cat("Due to the combination of the following conditions,\n\n")
cat("1. ", object$Algorithm, "\n", sep="")
if(Acc.Rate.Level == 1) {
cat("2. The acceptance rate (", min(object$Acceptance.Rate),
") is below ", Acc.Rate.Low, ".\n", sep="")}
else if(Acc.Rate.Level == 2) {
cat("2. The acceptance rate (", mean(object$Acceptance.Rate),
") is within the interval [", Acc.Rate.Low, ",",
Acc.Rate.High, "].\n", sep="")}
else {
cat("2. The acceptance rate (", max(object$Acceptance.Rate),
") is above ", Acc.Rate.High, ".\n", sep="")}
if(MCSE.tot < LIV) {
cat("3. At least one target MCSE is >= ",
MCSE.crit * 100,"% of its marginal posterior\n", sep="")
cat(" standard deviation.\n")}
else {
cat("3. Each target MCSE is < ", MCSE.crit * 100,
"% of its marginal posterior\n", sep="")
cat(" standard deviation.\n")}
if(ESS.min < ESS.crit) {
cat("4. At least one target distribution has an ",
"effective sample size\n", sep="")
cat(" (ESS) less than ", ESS.crit,
". The worst mixing chain is: ",
rownames(object$Summary1)[ESS.worst], " (ESS=",
object$Summary1[ESS.worst,"ESS"], ").\n", sep="")}
else {
cat("4. Each target distribution has an effective ",
"sample size (ESS)\n", sep="")
cat(" of at least ", ESS.crit, ".\n", sep="")}
if(Stationarity == FALSE) {
cat("5. At least one target distribution is not ",
"stationary.\n\n", sep="")}
else if(Stationarity == TRUE & object$Rec.BurnIn.Thinned > 0) {
cat("5. Each target distribution became stationary by\n")
cat(" ", object$Rec.BurnIn.Thinned + 1,
" iterations.\n\n", sep="")}
else {
cat("5. Each target distribution became stationary by\n")
cat(" ", object$Rec.BurnIn.Thinned + 1,
" iteration.\n\n", sep="")}
### Determine if Laplace's Demon is appeased...
Appeased <- FALSE
if(!is.null(object$Specs[["Adaptive"]]))
Adaptive <- object$Specs[["Adaptive"]]
else Adaptive <- object$Iterations + 1
if({Adaptive > object$Iterations} &
{Acc.Rate.Level == 2} & {MCSE.tot >= LIV} &
{ESS.min >= ESS.crit} & {Stationarity == TRUE}) {
Appeased <- TRUE
cat("Laplace's Demon has been appeased, and suggests\n")
cat("the marginal posterior samples should be plotted\n")
cat("and subjected to any other MCMC diagnostic deemed\n")
cat("fit before using these samples for inference.\n\n")
}
else {
if(object$Algorithm %in% c("Adaptive Directional Metropolis-within-Gibbs",
"Adaptive Griddy-Gibbs",
"Adaptive Metropolis-within-Gibbs",
"Componentwise Hit-And-Run Metropolis",
"Gibbs Sampler",
"Griddy-Gibbs",
"Metropolis-within-Gibbs",
"Multiple-Try Metropolis",
"Random Dive Metropolis-Hastings",
"Reversible-Jump",
"Sequential Adaptive Metropolis-within-Gibbs",
"Sequential Metropolis-within-Gibbs",
"Slice Sampler",
"Updating Sequential Adaptive Metropolis-within-Gibbs",
"Updating Sequential Metropolis-within-Gibbs")) {
options(warn=-1)
postcor <- try(cor(object$Posterior1), silent=TRUE)
options(warn=0)
if(!inherits(postcor, "try-error")) {
postcor <- try(quantile(abs(postcor)), silent=TRUE)
if(!inherits(postcor, "try-error")) {
cat("Quantiles of Absolute Posterior1 Correlation:\n")
print(postcor)
if(postcor["75%"] >= 0.5)
cat("\nPossibly excessive posterior correlation for a componentwise algorithm.")
cat("\n\n")}}}
if(Dim.Adapt == FALSE) {
cat("WARNING: Diminishing adaptation did not occur.\n")
if(!object$Algorithm %in% c("Automated Factor Slice Sampler",
"Interchain Adaptation",
"Metropolis-Adjusted Langevin Algorithm",
"No-U-Turn Sampler", "Refractive Sampler",
"Sequential Adaptive Metropolis-within-Gibbs",
"Univariate Eigenvector Slice Sampler",
"Updating Sequential Adaptive Metropolis-within-Gibbs"))
cat(" A new algorithm will be suggested.\n\n")}
cat("Laplace's Demon has not been appeased, and suggests\n")
cat("copy/pasting the following R code into the R",
" console,\n", sep="")
cat("and running it.\n\n")
if(object$Algorithm != "Interchain Adaptation")
cat("Initial.Values <- as.initial.values(", oname, ")\n", sep="")
if(object$Algorithm %in% c("Adaptive Metropolis-within-Gibbs",
"Metropolis-within-Gibbs"))
Time <- object$Iterations / object$Minutes
else Time <- object$Iterations / object$Minutes / LIV
if(Time >= 100) Fast <- TRUE
else Fast <- FALSE
if({Acc.Rate.Level == 2} & {MCSE.tot >= LIV} &
{ESS.min >= ESS.crit} & {Stationarity == TRUE}) Ready <- TRUE
else Ready <- FALSE
Alg <- switch(object$Algorithm,
"Adaptive Directional Metropolis-within-Gibbs"="ADMG",
"Adaptive Griddy-Gibbs"="AGG",
"Adaptive Hamiltonian Monte Carlo"="AHMC",
"Adaptive Metropolis"="AM",
"Adaptive Metropolis-within-Gibbs"="AMWG",
"Adaptive-Mixture Metropolis"="AMM",
"Affine-Invariant Ensemble Sampler"="AIES",
"Automated Factor Slice Sampler"="AFSS",
"Componentwise Hit-And-Run Metropolis"="CHARM",
"Delayed Rejection Adaptive Metropolis"="DRAM",
"Delayed Rejection Metropolis"="DRM",
"Differential Evolution Markov Chain"="DEMC",
"Elliptical Slice Sampler"="ESS",
"Experimental"="Exper",
"Gibbs Sampler"="Gibbs",
"Griddy-Gibbs"="GG",
"Hamiltonian Monte Carlo"="HMC",
"Hamiltonian Monte Carlo with Dual-Averaging"="HMCDA",
"Hit-And-Run Metropolis"="HARM",
"Independence Metropolis"="IM",
"Interchain Adaptation"="INCA",
"Metropolis-Adjusted Langevin Algorithm"="MALA",
"Metropolis-Coupled Markov Chain Monte Carlo"="MCMCMC",
"Metropolis-within-Gibbs"="MWG",
"Multiple-Try Metropolis"="MTM",
"No-U-Turn Sampler"="NUTS",
"Oblique Hyperrectangle Slice Sampler"="OHSS",
"Preconditioned Crank-Nicolson"="pCN",
"Random Dive Metropolis-Hastings"="RDMH",
"Random-Walk Metropolis"="RWM",
"Reflective Slice Sampler"="RSS",
"Refractive Sampler"="Refractive",
"Reversible-Jump"="RJ",
"Robust Adaptive Metropolis"="RAM",
"Sequential Adaptive Metropolis-within-Gibbs"="SAMWG",
"Sequential Metropolis-within-Gibbs"="SMWG",
"Slice Sampler"="Slice",
"Stochastic Gradient Langevin Dynamics"="SGLD",
"Tempered Hamiltonian Monte Carlo"="THMC",
"t-walk"="t-walk",
"Univariate Eigenvector Slice Sampler"="UESS",
"Updating Sequential Adaptive Metropolis-within-Gibbs"="USAMWG",
"Updating Sequential Metropolis-within-Gibbs"="USMWG")
Componentwise <- 0
if(Alg %in% c("ADMG","AFSS","AGG","AMWG","CHARM","GG","Gibbs",
"MWG","RJ","SAMWG","SMWG","Slice","USAMWG","USMWG"))
Componentwise <- 1
if({(Alg == "ADMG") & !Dim.Adapt} |
{(Alg == "ADMG") & !Ready}) {
### ADMG
n <- object$Specs[["n"]] + object$Iterations
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"ADMG\", ",
"Specs=list(n=", n, ", Periodicity=", Rec.Periodicity,
"))\n\n", sep="")
}
else if({Alg == "AFSS"} |
{(Alg == "AMWG") & Dim.Adapt & Fast & !Ready} |
{(Alg == "AMWG") & Dim.Adapt & !Fast & !Ready} |
{(Alg == "AMWG") & !Dim.Adapt & Fast & !Ready} |
{(Alg == "AMWG") & !Dim.Adapt & !Fast & !Ready}) {
### AFSS
if(Ready == TRUE) A <- 0
else if(Alg == "AFSS") A <- object$Specs[["A"]]
else A <- Inf
block <- "NULL"
if(Alg == "AFSS") m <- paste(oname, "$Specs$m", sep="")
else m <- 100
if(!is.null(object$Specs[["B"]]) &
!identical(object$Specs[["B"]],list()))
block <- "Block"
if(Alg == "AFSS")
n <- object$Specs[["n"]] + object$Iterations
else n <- 0
if(Alg == "AFSS")
w <- paste(oname, "$CovarDHis[nrow(", oname,
"$CovarDHis),]", sep="")
else w <- 1
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"AFSS\", ",
"Specs=list(A=", A, ", B=", block, ", m=",
m, ",\n", sep="")
cat(" n=", n, ", w=", w, "))\n\n", sep="")
}
else if(Alg == "AGG") {
### AGG
Grid <- "GaussHermiteQuadRule(3)$nodes"
CPUs <- substr(object$Call, 1, nchar(object$Call))[10]
CPUs <- strsplit(CPUs, " ")
pos <- grep("CPUs", CPUs[[1]])
CPUs <- as.numeric(strsplit(CPUs[[1]][pos+2], ","))
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"AGG\", Specs=", oname,
"$Specs))\n\n", sep="")
}
else if({(Alg == "AHMC") & Dim.Adapt & !Ready} |
{(Alg == "HMC") & Dim.Adapt & !Ready}) {
### AHMC
if(L > 1) {
L <- round(L*(Rec.Iterations/object$Iterations))
Rec.Iterations <- object$Iterations
Rec.Status <- object$Status
Rec.Thinning <- object$Thinning}
m <- "NULL"
if(!is.null(object$Specs[["m"]]) &
!identical(object$Specs[["m"]],list()))
m <- paste(oname, "$Specs$m", sep="")
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"AHMC\",\n", sep="")
cat(" Specs=list(epsilon=", oname, "$CovarDHis[nrow(",
oname, "$CovarDHis),],\n", sep="")
cat(" L=", object$Specs[["L"]], ", m=", m,
", Periodicity=", Rec.Periodicity, "))\n\n", sep="")
}
else if({Alg == "AIES"}) {
Nc <- 2*LIV
if(Acc.Rate.Level == 1)
Nc <- 2 + 20*(0.15 - object$Acceptance.Rate)
if(is.null(object$Specs[["Z"]])) Z <- "NULL"
else Z <- "object$Specs[[\"Z\"]]"
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"AIES\", Specs=list(Nc=", Nc,
", Z=", Z, ",\n", sep="")
cat(" beta=", object$Specs[["beta"]],
", CPUs=", object$Specs[["CPUs"]],
", Packages=NULL, Dyn.libs=NULL))\n\n", sep="")
}
else if({(Alg == "AM") & Dim.Adapt & Fast & !Ready} |
{(Alg == "AM") & Dim.Adapt & !Fast & !Ready}) {
### AM
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"AM\", ",
"Specs=list(Adaptive=", Rec.Adaptive, ", Periodicity=",
Rec.Periodicity, "))\n\n", sep="")
}
else if({(Alg == "AHMC") & !Dim.Adapt} |
{(Alg == "AM") & !Dim.Adapt & !Fast & Ready} |
{(Alg == "AMM") & Dim.Adapt & Fast & !Ready} |
{(Alg == "AMM") & Dim.Adapt & !Fast & !Ready} |
{(Alg == "DRAM") & !Dim.Adapt & !Fast & Ready} |
{(Alg == "DRM") & Dim.Adapt & Fast & !Ready} |
{(Alg == "DRM") & Dim.Adapt & !Fast & !Ready} |
{(Alg == "RAM") & !Dim.Adapt & !Fast & !Ready} |
{(Alg == "RAM") & !Dim.Adapt & Fast & !Ready} |
{(Alg == "RWM") & Dim.Adapt & Fast & !Ready} |
{(Alg == "RWM") & Dim.Adapt & !Fast & !Ready}) {
### AMM
block <- "NULL"
if(!is.null(object$Specs[["B"]]) &
!identical(object$Specs[["B"]],list()))
block <- paste(oname, "$Specs$B", sep="")
if(Rec.Status > Rec.Iterations)
Rec.Status <- Rec.Iterations
n <- object$Iterations
if(!is.null(object$Specs[["n"]]))
n <- object$Specs[["n"]] + object$Iterations
w <- 0.05
if(!is.null(object$Specs[["w"]]))
w <- object$Specs[["w"]]
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"AMM\", ",
"Specs=list(Adaptive=", Rec.Adaptive,
", B=", block, ", n=", n, ",\n", sep="")
cat(" Periodicity=", Rec.Periodicity, ", w=", w,
"))\n\n", sep="")
}
else if({(Alg == "AM") & !Dim.Adapt & Fast & Ready} |
{(Alg == "AM") & !Dim.Adapt & Fast & !Ready} |
{(Alg == "AMM") & !Dim.Adapt & Fast & Ready} |
{(Alg == "AMM") & !Dim.Adapt & Fast & !Ready} |
{(Alg == "DRAM") & !Dim.Adapt & Fast & Ready} |
{(Alg == "DRAM") & !Dim.Adapt & Fast & !Ready} |
{(Alg == "MWG") & Dim.Adapt & Fast & !Ready} |
{(Alg == "MWG") & Dim.Adapt & !Fast & !Ready}) {
### AMWG
if(Componentwise == 0) {
Rec.Iterations <- max(nrow(object$Posterior1),
trunc(Rec.Iterations / LIV))
Rec.Status <- trunc(interval(trunc(Rec.Status / LIV),
1, Rec.Iterations))
Rec.Thinning <- trunc(Rec.Iterations /
nrow(object$Posterior1))
Rec.Iterations <- nrow(object$Posterior1) *
Rec.Thinning}
if(Rec.Periodicity > Rec.Iterations)
Rec.Periodicity <- max(trunc(Rec.Iterations * 0.01),1)
block <- "NULL"
if(!is.null(object$Specs[["B"]]) &
!identical(object$Specs[["B"]],list()))
block <- paste(oname, "$Specs$B", sep="")
n <- object$Iterations
if(!is.null(object$Specs[["n"]]))
n <- object$Specs[["n"]] + object$Iterations
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"AMWG\", ",
"Specs=list(B=", block, ", n=", n, ", Periodicity=",
Rec.Periodicity, "))\n\n", sep="")
}
else if(Alg == "CHARM" & Acc.Rate.Level == 2) {
### CHARM
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"CHARM\", ",
"Specs=NULL)\n\n", sep="")
}
if(Alg == "CHARM" & Acc.Rate.Level != 2) {
### CHARM (Adaptive)
al <- 0.44
if(!is.na(object$Specs[["alpha.star"]]))
al <- object$Specs[["alpha.star"]]
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"CHARM\", ",
"Specs=list(alpha.star=", al, "))\n\n", sep="")
}
else if(Alg == "DEMC" & Dim.Adapt & !Ready) {
### DEMC
Nc <- max(3, round(LIV * 0.03))
gamma <- "NULL"
if(!is.null(object$Specs[["gamma"]]))
gamma <- object$Specs[["gamma"]]
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"DEMC\", ",
"Specs=list(Nc=", Nc, ", Z=", oname, "$Posterior1, ",
"gamma=", gamma,
", w=", object$Specs[["w"]],"))\n\n", sep="")
}
else if({(Alg == "DRAM") & Dim.Adapt & Fast & !Ready} |
{(Alg == "DRAM") & Dim.Adapt & !Fast & !Ready}) {
### DRAM
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"DRAM\", ",
"Specs=list(Adaptive=", Rec.Adaptive, ", Periodicity=",
Rec.Periodicity, "))\n\n", sep="")
}
else if({(Alg == "DRM") & Dim.Adapt & Fast & Ready} |
{(Alg == "DRM") & Dim.Adapt & !Fast & Ready}) {
### DRM
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"DRM\", ",
"Specs=NULL))\n\n", sep="")
}
else if(Alg == "ESS") {
### ESS
block <- "NULL"
if(!is.null(object$Specs[["B"]]) &
!identical(object$Specs[["B"]],list()))
block <- "Block"
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"ESS\", Specs=list(B=", block,
"))\n\n", sep="")
}
else if(Alg == "GG") {
### GG
Grid <- object$Specs[["Grid"]]
dparm <- object$Specs[["dparm"]]
CPUs <- object$Specs[["CPUs"]]
Packages <- object$Specs[["Packages"]]
Dyn.libs <- object$Specs[["Dyn.libs"]]
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"GG\", Specs=", oname,
"$Specs)\n\n", sep="")
}
else if(Alg == "Gibbs") {
### Gibbs
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"Gibbs\", ",
"Specs=", oname, "$Specs)\n\n", sep="")
}
else if(Alg == "HARM") {
### HARM
al <- 0.234
if(is.na(object$Specs[["alpha.star"]]) |
!is.null(object$Specs[["alpha.star"]]))
al <- object$Specs[["alpha.star"]]
block <- "NULL"
if(!is.null(object$Specs[["B"]]) &
!identical(object$Specs[["B"]],list()))
block <- "Block"
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"HARM\", ",
"Specs=list(alpha.star=", al, ", B=", block, ")\n\n",
sep="")
}
else if({(Alg == "AHMC") & Dim.Adapt & Ready} |
{(Alg == "HMC") & Dim.Adapt & Ready}) {
### HMC
if(L > 1) {
L <- round(L*(Rec.Iterations/object$Iterations))
Rec.Iterations <- object$Iterations
Rec.Status <- object$Status
Rec.Thinning <- object$Thinning}
m <- "NULL"
if(!is.null(object$Specs[["m"]]) &
!identical(object$Specs[["m"]],list()))
m <- paste(oname, "$Specs$m", sep="")
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"HMC\", ",
"Specs=list(epsilon=", oname, "$CovarDHis[1,], ",
sep="")
cat("L=", L, ", m=", m, "))\n\n", sep="")
}
else if(Alg == "HMCDA" & Dim.Adapt) {
### HMCDA
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"HMCDA\", ",
"Specs=list(A=", round(Rec.Iterations/2),
", delta=", object$Specs[["delta"]], ",\n", sep="")
cat(" epsilon=",
round(object$CovarDHis[nrow(object$CovarDHis),1],3),
", Lmax=", object$Specs[["Lmax"]],
", lambda=", object$Specs[["lambda"]],
"))\n\n", sep="")
}
else if(Alg == "IM") {
### IM
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"IM\", ",
"Specs=list(mu=apply(", oname,
"$Posterior1, 2, mean)))\n\n", sep="")
}
else if(Alg == "INCA") {
### INCA
detectedcores <- detectCores()
cat(oname, " <- LaplacesDemon.hpc(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"INCA\", ",
"Specs=list(Adaptive=", Rec.Adaptive, ", Periodicity=",
Rec.Periodicity, "),\n", sep="")
cat(" Chains=",detectedcores,
", CPUs=", detectedcores,
", Packages=NULL, Dyn.libs=NULL)\n\n", sep="")
}
else if(Alg == "MALA") {
### MALA
A <- object$Specs[["A"]]
alpha.star <- object$Specs[["alpha.star"]]
if(Dim.Adapt & Ready) gamma <- 0
else gamma <- object$Specs[["gamma"]]
delta <- object$Specs[["delta"]]
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"MALA\", ",
"Specs=list(A=", A, ", alpha.star=", alpha.star,
",\n", sep="")
cat(" gamma=", gamma,
", delta=", delta, ", epsilon=c(1e-6, 1e-7)))\n\n",
sep="")
}
else if(Alg == "MCMCMC") {
### MCMCMC
lambda <- object$Specs[["lambda"]]
CPUs <- object$Specs[["CPUs"]]
Packages <- object$Specs[["Packages"]]
Dyn.libs <- object$Specs[["Dyn.libs"]]
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname,"$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"MCMCMC\", Specs=list(lambda=",
lambda, ", CPUs=", CPUs,
", Packages=NULL, Dyn.libs=NULL))\n\n", sep="")
}
else if(Alg == "MTM") {
### MTM
K <- object$Specs[["K"]]
CPUs <- object$Specs[["CPUs"]]
Packages <- object$Specs[["Packages"]]
Dyn.libs <- object$Specs[["Dyn.libs"]]
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname,"$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"MTM\", Specs=list(K=", K,
", CPUs=", CPUs,
", Packages=NULL, Dyn.libs=NULL))\n\n", sep="")
}
else if({(Alg == "ADMG") & Dim.Adapt & Fast & Ready} |
{(Alg == "ADMG") & Dim.Adapt & !Fast & Ready} |
{(Alg == "AMWG") & Dim.Adapt & Fast & Ready} |
{(Alg == "AMWG") & Dim.Adapt & !Fast & Ready} |
{(Alg == "MWG") & Dim.Adapt & Fast & Ready} |
{(Alg == "MWG") & Dim.Adapt & !Fast & Ready}) {
### MWG
block <- "NULL"
if(!is.null(object$Specs[["B"]]) &
!identical(object$Specs[["B"]],list()))
block <- paste(oname, "$Specs$B", sep="")
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"MWG\", ",
"Specs=list(B=", block, "))\n\n", sep="")
}
else if({Alg == "NUTS"} |
{(Alg == "HMCDA") & !Dim.Adapt}) {
### NUTS
if(Alg == "HMCDA") delta <- 0.6
else delta <- object$Specs[["delta"]]
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"NUTS\", ",
"Specs=list(A=", round(Rec.Iterations/2),
", delta=", delta, ",\n", sep="")
cat(" epsilon=",
max(round(object$CovarDHis[nrow(object$CovarDHis),1],3),
1e-10), ", Lmax=", object$Specs[["Lmax"]],
"))\n\n", sep="")
}
else if(Alg == "OHSS") {
### OHSS
if(Ready == TRUE) A <- 0
else A <- object$Specs[["A"]]
n <- object$Specs[["n"]] + object$Iterations
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"OHSS\", ",
"Specs=list(A=", A, ", n=", n,"))\n\n", sep="")
}
else if(Alg == "pCN") {
### pCN
beta <- object$Specs[["beta"]]
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"RWM\", ",
"Specs=list(beta=", beta, "))\n\n", sep="")
}
else if({(Alg == "AM") & !Dim.Adapt & !Fast & !Ready} |
{(Alg == "AMM") & !Dim.Adapt & !Fast & Ready} |
{(Alg == "AMM") & !Dim.Adapt & !Fast & !Ready} |
{(Alg == "DRAM") & !Dim.Adapt & !Fast & !Ready} |
{(Alg == "RAM") & Dim.Adapt & Fast & !Ready} |
{(Alg == "RAM") & Dim.Adapt & !Fast & !Ready}) {
### RAM
al <- 0.234
if(!is.null(object$Specs[["alpha.star"]]))
al <- object$Specs[["alpha.star"]]
block <- "NULL"
if(!is.null(object$Specs[["B"]]) &
!identical(object$Specs[["B"]],list()))
block <- paste(oname, "$Specs$B", sep="")
Dist <- "N"
if(!is.null(object$Specs[["Dist"]]))
Dist <- object$Specs[["Dist"]]
gamma <- 0.66
if(!is.null(object$Specs[["gamma"]]))
gamma <- object$Specs[["gamma"]]
n <- object$Iterations
if(!is.null(object$Specs[["n"]]))
n <- object$Specs[["n"]] + object$Iterations
if(Rec.Status > Rec.Iterations) Rec.Status <- Rec.Iterations
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"RAM\", ",
"Specs=list(alpha.star=", al, ", B=", block,
", Dist=\"", Dist, "\",\n", sep="")
cat(" gamma=", gamma, ", n=", n, "))\n\n", sep="")
}
else if(Alg == "RDMH") {
### RDMH
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"RDMH\", ",
"Specs=NULL)\n\n", sep="")
}
else if(Alg == "Refractive") {
### Refractive
Adaptive <- object$Specs[["Adaptive"]]
m <- object$Specs[["m"]]
w <- object$Specs[["w"]]
if(Adaptive < object$Iterations)
w <- object$CovarDHis[nrow(object$CovarDHis),1]
if(!Dim.Adapt) Adaptive <- 1
else Adaptive <- Rec.Iterations + 1
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"Refractive\", ",
"Specs=list(Adaptive=", Adaptive, ", m=", m,
", w=", w, ", r=1.3))\n\n", sep="")
}
else if(Alg == "RJ" & (Acc.Rate.Level > 1)) {
### RJ
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"RJ\", ",
"Specs=list(bin.n=", object$Specs[["bin.n"]],
", bin.p=", object$Specs[["bin.p"]], ",\n", sep="")
cat(" parm.p=", paste("c(",
paste(object$Specs[["parm.p"]], collapse=","),
")", sep=""), ",\n", sep="")
cat(" selectable=", paste("c(",
paste(object$Specs[["selectable"]], collapse=","),
")", sep=""), ",\n", sep="")
cat(" selected=1*(Initial.Values != 0)))\n\n", sep="")
}
else if(Alg == "RSS") {
### RSS
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"RSS\", ",
"Specs=", oname, "$Specs)\n\n", sep="")
}
else if({(Alg == "AM") & Dim.Adapt & Fast & Ready} |
{(Alg == "AM") & Dim.Adapt & !Fast & Ready} |
{(Alg == "AMM") & Dim.Adapt & Fast & Ready} |
{(Alg == "AMM") & Dim.Adapt & !Fast & Ready} |
{(Alg == "DRAM") & Dim.Adapt & Fast & Ready} |
{(Alg == "DRAM") & Dim.Adapt & !Fast & Ready} |
{(Alg == "RAM") & !Dim.Adapt & !Fast & Ready} |
{(Alg == "RAM") & !Dim.Adapt & Fast & Ready} |
{(Alg == "RAM") & Dim.Adapt & Fast & Ready} |
{(Alg == "RAM") & Dim.Adapt & !Fast & Ready} |
{(Alg == "RWM") & Dim.Adapt & Fast & Ready} |
{(Alg == "RWM") & Dim.Adapt & !Fast & Ready}) {
### RWM
block <- "NULL"
if(!is.null(object$Specs[["B"]]) &
!identical(object$Specs[["B"]], list()))
block <- "Block"
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"RWM\", ",
"Specs=list(B=", block, "))\n\n", sep="")
}
else if({(Alg == "DEMC") & Dim.Adapt & Fast & Ready} |
{(Alg == "DEMC") & Dim.Adapt & !Fast & Ready}) {
### RWM from DEMC
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=cov(", oname, "$Posterior2), Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"RWM\", ",
"Specs=NULL)\n\n", sep="")
}
else if({(Alg == "SAMWG") & !Ready} |
{(Alg == "SMWG") & !Ready}) {
### SAMWG
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"SAMWG\", ",
"Specs=list(Dyn=Dyn, Periodicity=", Rec.Periodicity,
"))\n\n", sep="")
}
else if({(Alg == "SAMWG") & Ready} |
{(Alg == "SMWG") & Ready}) {
### SMWG
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"SMWG\", ",
"Specs=list(Dyn=Dyn))\n\n", sep="")
}
else if(Alg == "SGLD") {
### SGLD
eps <- object$Specs[["epsilon"]]
Fi <- object$Specs[["file"]]
nr <- object$Specs[["Nr"]]
nc <- object$Specs[["Nc"]]
size <- object$Specs[["size"]]
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"SGLD\", ",
"Specs=", oname, "$Specs)\n\n", sep="")
}
else if(Alg == "Slice") {
### Slice
block <- "NULL"
if(!is.null(object$Specs[["B"]]) &
!identical(object$Specs[["B"]],list()))
block <- paste(oname, "$Specs$B", sep="")
Bounds <- "c(-Inf,Inf)"
if(!is.null(object$Specs[["Bounds"]]) &
!identical(object$Specs[["Bounds"]],list()))
Bounds <- paste(oname, "$Specs$Bounds", sep="")
m <- "Inf"
if(!is.null(object$Specs[["m"]]) &
!identical(object$Specs[["m"]],list()))
m <- paste(oname, "$Specs$m", sep="")
Type <- "\"Continuous\""
if(!is.null(object$Specs[["Type"]]) &
!identical(object$Specs[["Type"]],list()))
Type <- paste(oname, "$Specs$Type", sep="")
w <- 1
if(!is.null(object$Specs[["w"]]) &
!identical(object$Specs[["w"]],list()))
w <- paste(oname, "$Specs$w", sep="")
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"Slice\", ",
"Specs=list(B=", block, ", Bounds=", Bounds, ",\n",
sep="")
cat(" m=", m, ", Type=", Type, ", w=", w, "))\n\n",
sep="")
}
else if(Alg == "THMC") {
### THMC
if(L > 1) {
L <- round(L*(Rec.Iterations/object$Iterations))
Rec.Iterations <- object$Iterations
Rec.Status <- object$Status
Rec.Thinning <- object$Thinning}
m <- "NULL"
if(!is.null(object$Specs[["m"]]) &
!identical(object$Specs[["m"]],list()))
m <- paste(oname, "$Specs$m", sep="")
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"THMC\", ",
"Specs=list(epsilon=", oname, "$CovarDHis[1,],\n",
sep="")
cat(" L=", L, ", m=", m,
", Temperature=", object$Specs[["Temperature"]],
"))\n\n", sep="")
}
else if(Alg == "t-walk" |
{(Alg == "DEMC") & !Dim.Adapt}) {
### twalk
if(Alg == "DEMC") {
n1 <- 4
at <- 6
aw <- 1.5
}
else {
n1 <- object$Specs[["n1"]]
at <- object$Specs[["at"]]
aw <- object$Specs[["aw"]]}
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=NULL, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"twalk\", ",
"Specs=list(SIV=NULL, n1=", n1,
", at=", at, ", aw=", aw, "))\n\n", sep="")
}
else if(Alg == "UESS") {
### UESS
if(Ready == TRUE) A <- 0
else A <- object$Specs[["A"]]
block <- "NULL"
if(!is.null(object$Specs[["B"]]) &
!identical(object$Specs[["B"]],list()))
block <- "Block"
m <- object$Specs[["m"]]
n <- object$Specs[["n"]] + object$Iterations
cat(oname, " <- LaplacesDemon(Model, Data=", dname,
", Initial.Values,\n", sep="")
cat(" Covar=", oname, "$Covar, Iterations=",
Rec.Iterations, ", Status=", Rec.Status, ", ",
"Thinning=", Rec.Thinning, ",\n", sep="")
cat(" Algorithm=\"UESS\", ",
"Specs=list(A=", A, ", B=", block, ", m=", m,
", n=", n, "))\n\n", sep="")
}
else if((Alg == "USAMWG") | (Alg == "USMWG")) {
### USAMWG or USMWG
cat("A Demonic Suggestion will not be made.\n\n")
}
}
cat("Laplace's Demon is finished consorting.\n")
}
#End
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.