Nothing
###########################################################################
# plot.demonoid.hpc #
# #
# The purpose of the plot.demonoid.hpc function is to plot an object of #
# class demonoid.hpc. #
###########################################################################
plot.demonoid.hpc <- function(x, BurnIn=0, Data=NULL, PDF=FALSE, Parms=NULL,
FileName = paste0("laplacesDemon-plot_", format(Sys.time(), "%Y-%m-%d_%T"), ".pdf"), ...)
{
### Initial Checks
if(missing(x)) stop("The x argument is required.")
if(class(x) != "demonoid.hpc")
stop("x must be of class demonoid.hpc.")
Chains <- length(x)
if(is.null(Data)) stop("The Data argument is NULL.")
nn <- nrow(x[[1]]$Posterior1)
if(BurnIn >= nn) BurnIn <- 0
Stat.at <- BurnIn + 1
### Selecting Parms
if(is.null(Parms)) {
Posterior <- list()
for (i in 1:Chains) {
Posterior[[i]] <- x[[i]][["Posterior1"]]}
}
else {
Parms <- sub("\\[","\\\\[",Parms)
Parms <- sub("\\]","\\\\]",Parms)
Parms <- sub("\\.","\\\\.",Parms)
if(length(grep(Parms[1], colnames(x[[1]]$Posterior1))) == 0)
stop("Parameter in Parms does not exist.")
keepcols <- grep(Parms[1], colnames(x[[1]]$Posterior1))
if(length(Parms) > 1) {
for (i in 2:length(Parms)) {
if(length(grep(Parms[i],
colnames(x[[1]]$Posterior1))) == 0)
stop("Parameter in Parms does not exist.")
keepcols <- c(keepcols,
grep(Parms[i], colnames(x[[1]]$Posterior1)))}}
Posterior <- list()
for (i in 1:Chains) {
Posterior[[i]] <- matrix(x[[i]][["Posterior1"]][,keepcols],
nn, length(keepcols))}
}
if(PDF == TRUE) {
pdf(FileName)
par(mfrow=c(3,3))
}
else {par(mfrow=c(3,3), ask=TRUE)}
### Plot Parameters
for (j in 1:ncol(Posterior[[1]])) {
plot(Stat.at:nn, Posterior[[1]][Stat.at:nn,j],
ylim=c(min(matrix(sapply(Posterior, function(x) {
min = min(x[,j])}), nn, Chains)[Stat.at:nn,]),
max(matrix(sapply(Posterior, function(x) {
max = max(x[,j])}), nn, Chains)[Stat.at:nn,])),
col=rgb(0,0,0,50,maxColorValue=255), type="l",
xlab="Thinned Samples", ylab="Value",
main=colnames(Posterior[[1]])[j])
for (n in 2:Chains) {
lines(Stat.at:nn, Posterior[[n]][Stat.at:nn,j],
col=rgb(col2rgb(n)[1],col2rgb(n)[2],col2rgb(n)[3],50,
maxColorValue=255))}
plot(density(Posterior[[1]][Stat.at:nn,j]), col="white",
xlab="Value", main=colnames(Posterior[[1]])[j])
polygon(density(Posterior[[1]][Stat.at:nn,j]),
col=rgb(0,0,0,50,maxColorValue=255), border=NA)
for (n in 2:Chains) {
polygon(density(Posterior[[n]][Stat.at:nn,j]),
col=rgb(col2rgb(n)[1],col2rgb(n)[2],col2rgb(n)[3],50,
maxColorValue=255), border=NA)}
abline(v=0, col="red", lty=2)
### Only plot an ACF if there's > 1 unique values
if(!is.constant(Posterior[[1]][Stat.at:nn,j])) {
z <- acf(Posterior[[1]][Stat.at:nn,j], plot=FALSE)
se <- 1/sqrt(length(Posterior[[1]][Stat.at:nn,j]))
plot(z$lag, z$acf, ylim=c(min(z$acf,-2*se),1),
col=rgb(0,0,0,50,maxColorValue=255), type="h",
main=colnames(Posterior[[1]])[j], xlab="Lag",
ylab="Correlation")
abline(h=(2*se), col="red", lty=2)
abline(h=(-2*se), col="red", lty=2)
for (n in 2:Chains) {
z <- acf(Posterior[[n]][Stat.at:nn,j], plot=FALSE)
se <- 1/sqrt(length(Posterior[[n]][Stat.at:nn,j]))
lines(z$lag, z$acf, col=rgb(col2rgb(n)[1],
col2rgb(n)[2],col2rgb(n)[3],50,
maxColorValue=255))}
}
else {plot(0, 0, main=paste(colnames(Posterior[[1]])[j],
"is a constant."))}
}
rm(Posterior)
### Plot Deviance
Deviance <- list()
for (i in 1:Chains) {Deviance[[i]] <- x[[i]][["Deviance"]]}
plot(Stat.at:nn, Deviance[[1]][Stat.at:nn],
ylim=c(min(sapply(Deviance, function(x) {min(x[Stat.at:nn])})),
max(sapply(Deviance, function(x) {max(x[Stat.at:nn])}))),
col=rgb(0,0,0,50,maxColorValue=255),
type="l", xlab="Thinned Samples", ylab="Value", main="Deviance")
for (n in 2:Chains) {
lines(Stat.at:nn, Deviance[[n]][Stat.at:nn],
col=rgb(col2rgb(n)[1], col2rgb(n)[2],col2rgb(n)[3],50,
maxColorValue=255))}
plot(density(Deviance[[1]][Stat.at:nn]), col="white",
xlab="Value", main="Deviance")
polygon(density(Deviance[[1]][Stat.at:nn]),
col=rgb(0,0,0,50,maxColorValue=255), border=NA)
for (n in 2:Chains) {
polygon(density(Deviance[[n]][Stat.at:nn]),
col=rgb(col2rgb(n)[1], col2rgb(n)[2],col2rgb(n)[3],50,
maxColorValue=255), border=NA)}
abline(v=0, col="red", lty=2)
#### Only plot an ACF if there's > 1 unique values
if(!is.constant(Deviance[[1]][Stat.at:nn])) {
z <- acf(Deviance[[1]][Stat.at:nn], plot=FALSE)
se <- 1/sqrt(length(Deviance[[1]][Stat.at:nn]))
plot(z$lag, z$acf, ylim=c(min(z$acf,-2*se),1),
col=rgb(0,0,0,50,maxColorValue=255), type="h",
main="Deviance", xlab="Lag", ylab="Correlation")
abline(h=(2*se), col="red", lty=2)
abline(h=(-2*se), col="red", lty=2)
for (n in 2:Chains) {
z <- acf(Deviance[[n]][Stat.at:nn], plot=FALSE)
se <- 1/sqrt(length(Deviance[[n]][Stat.at:nn]))
lines(z$lag, z$acf, col=rgb(col2rgb(n)[1],
col2rgb(n)[2],col2rgb(n)[3],50,
maxColorValue=255))}
}
else {plot(0, 0, main="Deviance is a constant.")}
rm(Deviance)
#### Plot Monitored Variables
J <- length(Data[["mon.names"]])
Monitor <- list()
for (i in 1:Chains) {
Monitor[[i]] <- matrix(x[[i]][["Monitor"]], nn, J)}
for (j in 1:J) {
plot(Stat.at:nn, Monitor[[1]][Stat.at:nn,j],
ylim=c(min(sapply(Monitor, function(x) {min(x[Stat.at:nn,j])})),
max(sapply(Monitor, function(x) {max(x[Stat.at:nn,j])}))),
col=rgb(0,0,0,50,maxColorValue=255),
type="l", xlab="Thinned Samples", ylab="Value",
main=Data[["mon.names"]][j])
for (n in 2:Chains) {
lines(Stat.at:nn, Monitor[[n]][Stat.at:nn,j],
col=rgb(col2rgb(n)[1],col2rgb(n)[2],col2rgb(n)[3],50,
maxColorValue=255))}
plot(density(Monitor[[1]][Stat.at:nn,j]), col="white",
xlab="Value", main=Data[["mon.names"]][j])
polygon(density(Monitor[[1]][Stat.at:nn,j]),
col=rgb(0,0,0,50,maxColorValue=255), border=NA)
for (n in 2:Chains) {
polygon(density(Monitor[[n]][Stat.at:nn,j]),
col=rgb(col2rgb(n)[1],col2rgb(n)[2],col2rgb(n)[3],50,
maxColorValue=255), border=NA)}
abline(v=0, col="red", lty=2)
### Only plot an ACF if there's > 1 unique values
if(!is.constant(Monitor[[1]][Stat.at:nn,j])) {
z <- acf(Monitor[[1]][Stat.at:nn,j], plot=FALSE)
se <- 1/sqrt(length(Monitor[[1]][Stat.at:nn,j]))
plot(z$lag, z$acf, ylim=c(min(z$acf,-2*se),1),
col=rgb(0,0,0,50,maxColorValue=255), type="h",
main=Data[["mon.names"]][j], xlab="Lag",
ylab="Correlation")
abline(h=(2*se), col="red", lty=2)
abline(h=(-2*se), col="red", lty=2)
for (n in 2:Chains) {
z <- acf(Monitor[[n]][Stat.at:nn,j], plot=FALSE)
se <- 1/sqrt(length(Monitor[[n]][Stat.at:nn,j]))
lines(z$lag, z$acf, col=rgb(col2rgb(n)[1],
col2rgb(n)[2],col2rgb(n)[3],50,
maxColorValue=255))}
}
else {plot(0, 0, main=paste(Data[["mon.names"]][j],
"is a constant."))}
}
rm(Monitor)
#### Diminishing Adaptation
if(nrow(x[[1]]$CovarDHis) > 1) {
Diff <- abs(diff(x[[1]]$CovarDHis))
adaptchange <- matrix(NA, nrow(Diff), 3)
for (i in 1:nrow(Diff)) {
adaptchange[i,1:3] <- as.vector(quantile(Diff[i,],
probs=c(0.025, 0.500, 0.975)))}
plot(adaptchange[,2], ylim=c(min(adaptchange), max(adaptchange)),
type="l", col=rgb(0,0,0,50,maxColorValue=255),
xlab="Adaptations", ylab="Absolute Difference",
main="Proposal Variance", sub="Median=Red, 95% Bounds=Gray")
for (n in 2:Chains) {
Diff <- abs(diff(x[[n]]$CovarDHis))
adaptchange <- matrix(NA, nrow(Diff), 3)
for (i in 1:nrow(Diff)) {
adaptchange[i,1:3] <- as.vector(quantile(Diff[i,],
probs=c(0.025, 0.500, 0.975)))}
lines(adaptchange[,2], col=rgb(col2rgb(n)[1],
col2rgb(n)[2],col2rgb(n)[3],50, maxColorValue=255))}
}
if(PDF == TRUE) dev.off()
}
#End
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.