Nothing
###########################################################################
# summary.demonoid.ppc #
# #
# The purpose of the summary.demonoid.ppc function is to summarize an #
# object of class demonoid.ppc (posterior predictive check). #
###########################################################################
summary.demonoid.ppc <- function(object=NULL, Categorical=FALSE, Rows=NULL,
Discrep=NULL, d=0, Quiet=FALSE, ...)
{
if(is.null(object)) stop("The object argument is NULL.")
y <- object$y
yhat <- object$yhat
Deviance <- object$Deviance
if(is.null(Rows)) Rows <- 1:length(y)
if(any(Rows > length(y)) || any(Rows <= 0)) {
warning("Invalid Rows argument; All rows included.")
Rows <- 1:length(y)}
### Create Continuous Summary Table
if(Categorical == FALSE) {
Summ <- matrix(NA, length(y), 8, dimnames=list(1:length(y),
c("y","Mean","SD","LB","Median","UB","PQ","Discrep")))
Summ[,1] <- y
Summ[,2] <- round(rowMeans(yhat),3)
Summ[,3] <- round(sqrt(.rowVars(yhat)),3)
for (i in 1:length(y))
{
Summ[i,4] <- round(quantile(yhat[i,], probs=0.025,
na.rm=TRUE),3)
Summ[i,5] <- round(quantile(yhat[i,], probs=0.500,
na.rm=TRUE),3)
Summ[i,6] <- round(quantile(yhat[i,], probs=0.975,
na.rm=TRUE),3)
Summ[i,7] <- round(mean(yhat[i,] >= y[i], na.rm=TRUE),3)
}
### Discrepancy Statistics
Concordance <- 1 - mean({{Summ[,7] < 0.025} | {Summ[,7] > 0.975}},
na.rm=TRUE)
if(identical(yhat,y)) Concordance <- 1
Discrepancy.Statistic <- 0
if(!is.null(Discrep) && {Discrep == "Chi-Square"}) {
Summ[,8] <- round((y - rowMeans(yhat))^2 /
.rowVars(yhat),3)
Discrepancy.Statistic <- round(sum(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "Chi-Square2"}) {
chisq.obs <- chisq.rep <- yhat
E.y <- E.yrep <- rowMeans(yhat, na.rm=TRUE)
for (i in 1:nrow(yhat)) {
chisq.obs[i,] <- (y[i] - E.y[i])^2 / E.y[i]
chisq.rep[i,] <- (yhat[i,] - E.yrep[i])^2 / E.yrep[i]
}
Summ[,8] <- round(rowMeans(chisq.rep > chisq.obs,
na.rm=TRUE),3)
Discrepancy.Statistic <- round(mean((Summ[,8] < 0.025) |
(Summ[,8] > 0.975), na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "DW"}) {
Summ[,8] <- round((rowMeans(y - yhat, na.rm=TRUE) -
c(0, diff(rowMeans(y - yhat, na.rm=TRUE))))^2 /
rowMeans(y - yhat, na.rm=TRUE)^2, 3)
Discrepancy.Statistic <- round(sum(Summ[,8], na.rm=TRUE), 3)}
if(!is.null(Discrep) && {Discrep == "Kurtosis"}) {
kurtosis <- function(x) {
m4 <- mean((x-mean(x, na.rm=TRUE))^4, na.rm=TRUE)
kurt <- m4/(sd(x, na.rm=TRUE)^4)-3
return(kurt)}
for (i in 1:length(y)) {Summ[i,8] <- round(kurtosis(yhat[i,]),3)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "L.criterion"}) {
Summ[,8] <- round(sqrt(.rowVars(yhat) +
(y - rowMeans(yhat))^2),3)
Discrepancy.Statistic <- round(sum(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "MASE"}) {
Summ[,8] <- round(abs(rowMeans(y - yhat, na.rm=TRUE) /
mean(abs(diff(y)), na.rm=TRUE)), 3)
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "MSE"}) {
Summ[,8] <- round(rowMeans((y - yhat)^2, na.rm=TRUE),3)
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "PPL"}) {
Summ[,8] <- round(.rowVars(yhat) + (d/(d+1)) *
(rowMeans(yhat) - y)^2,3)
Discrepancy.Statistic <- round(sum(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "Quadratic Loss"}) {
Summ[,8] <- round(rowMeans((y - yhat)^2, na.rm=TRUE),3)
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "Quadratic Utility"}) {
Summ[,8] <- round(rowMeans(-1*(y - yhat)^2, na.rm=TRUE),3)
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "RMSE"}) {
Summ[,8] <- round(sqrt(rowMeans((y - yhat)^2, na.rm=TRUE)),3)
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "Skewness"}) {
skewness <- function(x) {
m3 <- mean((x-mean(x, na.rm=TRUE))^3, na.rm=TRUE)
skew <- m3/(sd(x, na.rm=TRUE)^3)
return(skew)}
for (i in 1:length(y)) {Summ[i,8] <- round(skewness(yhat[i,]),3)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "max(yhat[i,]) > max(y)"}) {
for (i in 1:length(y)) {Summ[i,8] <- max(yhat[i,]) > max(y)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "mean(yhat[i,]) > mean(y)"}) {
for (i in 1:length(y)) {Summ[i,8] <- mean(yhat[i,]) > mean(y)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "mean(yhat[i,] > d)"}) {
for (i in 1:length(y)) {Summ[i,8] <- mean(yhat[i,] > d)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "mean(yhat[i,] > mean(y))"}) {
for (i in 1:length(y)) {Summ[i,8] <- mean(yhat[i,] > mean(y))}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "min(yhat[i,]) < min(y)"}) {
for (i in 1:length(y)) {Summ[i,8] <- min(yhat[i,]) < min(y)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "round(yhat[i,]) = d"}) {
for (i in 1:length(y)) {
Summ[i,8] <- round(mean(round(yhat[i,]) == d,
na.rm=TRUE), 3)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "sd(yhat[i,]) > sd(y)"}) {
for (i in 1:length(y)) {Summ[i,8] <- sd(yhat[i,]) > sd(y)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
Dbar <- round(mean(Deviance, na.rm=TRUE),3)
pD <- round(var(Deviance, na.rm=TRUE)/2, 3)
BPIC <- Dbar + 2*pD
bpic <- matrix(c(Dbar, pD, BPIC), 1, 3)
colnames(bpic) <- c("Dbar","pD","BPIC"); rownames(bpic) <- ""
L <- round(sqrt(.rowVars(yhat) + (y - rowMeans(yhat))^2),3)
S.L <- round(sd(L, na.rm=TRUE),3); L <- round(sum(L, na.rm=TRUE),3)
### Create Output
Summ.out <- list(BPIC=bpic,
Concordance=Concordance,
Discrepancy.Statistic=round(Discrepancy.Statistic,5),
L.criterion=L,
S.L=S.L,
Summary=Summ[Rows,])
if(Quiet == FALSE) {
cat("Bayesian Predictive Information Criterion:\n")
print(bpic)
cat("Concordance: ", Concordance, "\n")
cat("Discrepancy Statistic: ",
round(Discrepancy.Statistic,5), "\n")
cat("L-criterion: ", L, ", S.L: ", S.L, sep="", "\n")
cat("Records: \n")
print(Summ[Rows,])}
}
### Create Categorical Summary Table
else {
catcounts <- table(y)
sumnames <- rep(NA, length(catcounts)+3)
sumnames[1] <- "y"
for (i in 1:length(catcounts)) {
sumnames[i+1] <- paste("p(yhat=",names(catcounts)[i],")",sep="")}
sumnames[length(sumnames)-1] <- "Lift"
sumnames[length(sumnames)] <- "Discrep"
Summ <- matrix(NA, length(y), length(sumnames),
dimnames=list(1:length(y), sumnames))
Summ[,1] <- y
for (i in 1:length(catcounts)) {
Summ[,i+1] <- rowSums(yhat == as.numeric(names(catcounts)[i])) /
ncol(yhat)}
Summ[,{ncol(Summ)-1}] <- 1
for (i in 1:length(y)) {
Summ[i,{ncol(Summ)-1}] <- Summ[i,
grep(Summ[i,1],names(catcounts))+1] /
{as.vector(catcounts[grep(Summ[i,1],names(catcounts))]) /
sum(catcounts)} - 1}
### Discrepancy Statistics
Mean.Lift <- round(mean(Summ[,{ncol(Summ)-1}]),3)
Discrepancy.Statistic <- 0
if(!is.null(Discrep) && {Discrep == "p(yhat[i,] != y[i])"}) {
for (i in 1:length(y)) {Summ[i,ncol(Summ)] <- 1 -
Summ[i, grep(Summ[i,1],names(catcounts))+1]}
Discrepancy.Statistic <- round(mean(Summ[,ncol(Summ)],
na.rm=TRUE),3)}
Dbar <- round(mean(Deviance, na.rm=TRUE),3)
pD <- round(var(Deviance, na.rm=TRUE)/2, 3)
BPIC <- Dbar + 2*pD
bpic <- matrix(c(Dbar, pD, BPIC), 1, 3)
colnames(bpic) <- c("Dbar","pD","BPIC"); rownames(bpic) <- ""
### Create Output
Summ.out <- list(BPIC=bpic,
Mean.Lift=Mean.Lift,
Discrepancy.Statistic=round(Discrepancy.Statistic,5),
Summary=Summ[Rows,])
if(Quiet == FALSE) {
cat("Bayesian Predictive Information Criterion:\n")
print(bpic)
cat("Mean Lift: ", Mean.Lift, "\n")
cat("Discrepancy Statistic: ",
round(Discrepancy.Statistic,5), "\n")
cat("Records: \n")
print(Summ[Rows,])}
}
return(invisible(Summ.out))
}
#End
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.