Nothing
###########################################################################
# summary.iterquad.ppc #
# #
# The purpose of the summary.iterquad.ppc function is to summarize an #
# object of class iterquad.ppc (posterior predictive check). #
###########################################################################
summary.iterquad.ppc <- function(object=NULL, Categorical=FALSE, Rows=NULL,
Discrep=NULL, d=0, Quiet=FALSE, ...)
{
if(is.null(object)) stop("The object argument is NULL.")
y <- object$y
yhat <- object$yhat
Deviance <- object$Deviance
monitor <- object$monitor
if(is.null(Rows)) Rows <- 1:length(y)
if(any(Rows > length(y)) || any(Rows <= 0)) {
warning("Invalid Rows argument; All rows included.")
Rows <- 1:length(y)}
### Create Continuous Summary Table for y and yhat
if(Categorical == FALSE) {
Summ <- matrix(NA, length(y), 8, dimnames=list(1:length(y),
c("y","Mean","SD","LB","Median","UB","PQ","Discrep")))
Summ[,1] <- y
Summ[,2] <- round(rowMeans(yhat),3)
Summ[,3] <- round(sqrt(.rowVars(yhat)),3)
for(i in 1:length(y))
{
Summ[i,4] <- round(quantile(yhat[i,], probs=0.025,
na.rm=TRUE),3)
Summ[i,5] <- round(quantile(yhat[i,], probs=0.500,
na.rm=TRUE),3)
Summ[i,6] <- round(quantile(yhat[i,], probs=0.975,
na.rm=TRUE),3)
Summ[i,7] <- round(mean(yhat[i,] >= y[i], na.rm=TRUE),3)
}
### Discrepancy Statistics
Concordance <- 1 - mean(({Summ[,7] < 0.025} | {Summ[,7] > 0.975}),
na.rm=TRUE)
Discrepancy.Statistic <- 0
if(!is.null(Discrep) && {Discrep == "Chi-Square"}) {
Summ[,8] <- round((y - rowMeans(yhat))^2 /
.rowVars(yhat),3)
Discrepancy.Statistic <- round(sum(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "Chi-Square2"}) {
chisq.obs <- chisq.rep <- yhat
E.y <- E.yrep <- rowMeans(yhat, na.rm=TRUE)
for (i in 1:nrow(yhat)) {
chisq.obs[i,] <- (y[i] - E.y[i])^2 / E.y[i]
chisq.rep[i,] <- (yhat[i,] - E.yrep[i])^2 / E.yrep[i]
}
Summ[,8] <- round(rowMeans(chisq.rep > chisq.obs,
na.rm=TRUE),3)
Discrepancy.Statistic <- round(mean((Summ[,8] < 0.025) |
(Summ[,8] > 0.975), na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "Kurtosis"}) {
kurtosis <- function(x) {
m4 <- mean((x-mean(x, na.rm=TRUE))^4, na.rm=TRUE)
kurt <- m4/(sd(x, na.rm=TRUE)^4)-3
return(kurt)}
for (i in 1:length(y)) {Summ[i,8] <- round(kurtosis(yhat[i,]),3)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "L.criterion"}) {
Summ[,8] <- round(sqrt(.rowVars(yhat) +
(y - rowMeans(yhat))^2),3)
Discrepancy.Statistic <- round(sum(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "MASE"}) {
Summ[,8] <- round(abs(rowMeans(y - yhat, na.rm=TRUE) /
mean(abs(diff(y)), na.rm=TRUE)), 3)
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "MSE"}) {
Summ[,8] <- round(rowMeans((y - yhat)^2, na.rm=TRUE),3)
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "PPL"}) {
Summ[,8] <- round(.rowVars(yhat) + (d/(d+1)) *
(rowMeans(yhat) - y)^2,3)
Discrepancy.Statistic <- round(sum(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "Quadratic Loss"}) {
Summ[,8] <- round(rowMeans((y - yhat)^2, na.rm=TRUE),3)
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "Quadratic Utility"}) {
Summ[,8] <- round(rowMeans(-1*(y - yhat)^2, na.rm=TRUE),3)
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "RMSE"}) {
Summ[,8] <- round(sqrt(rowMeans((y - yhat)^2, na.rm=TRUE)),3)
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "Skewness"}) {
skewness <- function(x) {
m3 <- mean((x-mean(x, na.rm=TRUE))^3, na.rm=TRUE)
skew <- m3/(sd(x, na.rm=TRUE)^3)
return(skew)}
for (i in 1:length(y)) {Summ[i,8] <- round(skewness(yhat[i,]),3)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "max(yhat[i,]) > max(y)"}) {
for (i in 1:length(y)) {Summ[i,8] <- max(yhat[i,]) > max(y)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "mean(yhat[i,]) > mean(y)"}) {
for (i in 1:length(y)) {Summ[i,8] <- mean(yhat[i,]) > mean(y)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "mean(yhat[i,] > d)"}) {
for (i in 1:length(y)) {Summ[i,8] <- mean(yhat[i,] > d)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "mean(yhat[i,] > mean(y))"}) {
for (i in 1:length(y)) {Summ[i,8] <- mean(yhat[i,] > mean(y))}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "min(yhat[i,]) < min(y)"}) {
for (i in 1:length(y)) {Summ[i,8] <- min(yhat[i,]) < min(y)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "round(yhat[i,]) = d"}) {
for (i in 1:length(y)) {
Summ[i,8] <- round(mean(round(yhat[i,]) == d,
na.rm=TRUE), 3)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
if(!is.null(Discrep) && {Discrep == "sd(yhat[i,]) > sd(y)"}) {
for (i in 1:length(y)) {Summ[i,8] <- sd(yhat[i,]) > sd(y)}
Discrepancy.Statistic <- round(mean(Summ[,8], na.rm=TRUE),3)}
L <- round(sqrt(.rowVars(yhat) + (y - rowMeans(yhat))^2), 3)
S.L <- round(sd(L, na.rm=TRUE),3); L <- round(sum(L, na.rm=TRUE),3)
### Deviance
Dbar <- round(mean(Deviance, na.rm=TRUE),3)
pD <- round(var(Deviance, na.rm=TRUE) / 2,3)
BPIC <- Dbar + 2*pD
bpic <- matrix(c(Dbar, pD, BPIC), 1, 3)
colnames(bpic) <- c("Dbar","pD","BPIC"); rownames(bpic) <- ""
### Create Summary Table for monitored variables
Mon <- matrix(NA, nrow(monitor), 5,
dimnames=list(c(rownames(monitor)),
c("Mean","SD","LB","Median","UB")))
for (i in 1:nrow(monitor)) {
Mon[i,1] <- mean(monitor[i,])
Mon[i,2] <- round(sd(monitor[i,]),3)
Mon[i,3] <- round(quantile(monitor[i,], probs=0.025),3)
Mon[i,4] <- round(quantile(monitor[i,], probs=0.500),3)
Mon[i,5] <- round(quantile(monitor[i,], probs=0.975),3)
}
### Create Output
Summ.out <- list(BPIC=bpic,
Concordance=Concordance,
Discrepancy.Statistic=round(Discrepancy.Statistic,5),
L.criterion=L,
S.L=S.L,
Summary=Summ[Rows,])
if(Quiet == FALSE) {
cat("Bayesian Predictive Information Criterion:\n")
print(bpic)
cat("Concordance: ", Concordance, "\n")
cat("Discrepancy Statistic: ",
round(Discrepancy.Statistic,5), "\n")
cat("L-criterion: ", L, ", S.L: ", S.L, sep="", "\n")
cat("Monitors:\n")
print(Mon)
cat("\n\nRecords:\n")
print(Summ[Rows,])}
}
### Create Categorical Summary Table
else {
catcounts <- table(y)
sumnames <- rep(NA, length(catcounts)+3)
sumnames[1] <- "y"
for (i in 1:length(catcounts)) {
sumnames[i+1] <- paste("p(yhat=",names(catcounts)[i],")",sep="")}
sumnames[length(sumnames)-1] <- "Lift"
sumnames[length(sumnames)] <- "Discrep"
Summ <- matrix(NA, length(y), length(sumnames),
dimnames=list(1:length(y), sumnames))
Summ[,1] <- y
for (i in 1:length(catcounts)) {
Summ[,i+1] <- rowSums(yhat == as.numeric(names(catcounts)[i])) /
ncol(yhat)}
Summ[,{ncol(Summ)-1}] <- 1
for (i in 1:length(y)) {
Summ[i,{ncol(Summ)-1}] <- Summ[i,
grep(Summ[i,1],names(catcounts))+1] /
{as.vector(catcounts[grep(Summ[i,1],names(catcounts))]) /
sum(catcounts)} - 1}
### Discrepancy Statistics
Mean.Lift <- round(mean(Summ[,{ncol(Summ)-1}]),3)
Discrepancy.Statistic <- 0
if(!is.null(Discrep) && {Discrep == "p(yhat[i,] != y[i])"}) {
for (i in 1:length(y)) { Summ[i,ncol(Summ)] <- 1 -
Summ[i, grep(Summ[i,1],names(catcounts))+1]}
Discrepancy.Statistic <- round(mean(Summ[,ncol(Summ)],
na.rm=TRUE),3)}
### Deviance
Dbar <- round(mean(Deviance, na.rm=TRUE),3)
pD <- round(var(Deviance, na.rm=TRUE) / 2,3)
BPIC <- Dbar + 2*pD
bpic <- matrix(c(Dbar, pD, BPIC), 1, 3)
colnames(bpic) <- c("Dbar","pD","BPIC"); rownames(bpic) <- ""
### Create Summary Table for monitored variables
Mon <- matrix(NA, nrow(monitor), 5,
dimnames=list(c(rownames(monitor)),
c("Mean","SD","LB","Median","UB")))
for (i in 1:nrow(monitor)) {
Mon[i,1] <- mean(monitor[i,])
Mon[i,2] <- sd(monitor[i,])
Mon[i,3] <- quantile(monitor[i,], probs=0.025)
Mon[i,4] <- quantile(monitor[i,], probs=0.500)
Mon[i,5] <- quantile(monitor[i,], probs=0.975)
}
### Create Output
Summ.out <- list(BPIC=bpic,
Mean.Lift=Mean.Lift,
Discrepancy.Statistic=round(Discrepancy.Statistic,5),
Summary=Summ[Rows,])
if(Quiet == FALSE) {
cat("Bayesian Predictive Information Criterion:\n")
print(bpic)
cat("Mean Lift: ", Mean.Lift, "\n")
cat("Discrepancy Statistic: ",
round(Discrepancy.Statistic,5), "\n")
cat("Monitors:\n")
print(Mon)
cat("\n\nRecords: \n")
print(Summ[Rows,])}
}
return(invisible(Summ.out))
}
#End
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.