Nothing
#' Get MIC meta-data from feature database
#'
#' @param x dataframe containing meta-data
#' @param ids vector of IDs to get meta-data for
#' @param ab_col column name containing MIC results
#' @param id_col column name containing IDs
#' @param as_mic return as AMR::as.mic
#' @param prefer_high_mic where multiple MIC results per ID, prefer the higher MIC
#' @param simplify return as vector of MICs (vs dataframe)
#'
#' @return vector containing MICs, or dataframe of IDs and MICs
#' @export
#'
#' @description
#' This function helps extract MICs from a database of results. It is compatible
#' with the PATRIC meta data format when used on a tidy_patric_db object,
#' created using tidy_patric_db().
#'
#' If more than one MIC is present for a particular observation, the function
#' can return the higher MIC by setting prefer_high_mic = TRUE. If
#' prefer_high_mic = FALSE, the lower MIC will be returned.
#'
#' @examples
#' df <- data.frame(genome_id = c("a_12", "b_42", "x_21", "x_21", "r_75"),
#' gentamicin = c(0.25, 0.125, 32.0, 16.0, "<0.0125"))
#' get_mic(df,
#' ids = c("b_42", "x_21"),
#' ab_col = "gentamicin",
#' id_col = "genome_id",
#' as_mic = FALSE,
#' prefer_high_mic = TRUE,
#' simplify = TRUE)
get_mic <- function(x,
ids,
ab_col,
id_col = NULL,
as_mic = TRUE,
prefer_high_mic = TRUE,
simplify = TRUE) {
if ("save_order" %in% names(x)) {
stop("Unable to work with x that contains column name 'save_order', please
rename.")
}
if (inherits(x, "tidy_patric_db")) {
id_col = "genome_id"
}
if (!inherits(x, "tidy_patric_db") & is.null(id_col)) {
stop("Provide id_col or pre-process meta data using tidy_patric_db()")
}
x <- x[order(x[[id_col]], x[[ab_col]], decreasing = prefer_high_mic),]
x <- x[!duplicated(x[[id_col]]),]
output <- data.frame(ids)
names(output) <- id_col
output$save_order <- 1:nrow(output)
output <- merge(output, x,
by = id_col,
sort = FALSE,
all.x = TRUE)
if (as_mic) {
rlang::check_installed("AMR", "To return as MIC class, AMR package must be installed")
output[[ab_col]] <- AMR::as.mic(output[[ab_col]])
}
output <- output[order(output$save_order),]
output$save_order <- NULL
if (simplify) {
return(output[[ab_col]])
} else {
return(output)
}
}
#' Clean up raw MIC for use as a feature
#'
#' @param mic character containing MIC/s
#'
#' @return character of clean MIC/s
#' @description
#' Removes leading "=" which can sometimes be present in raw MIC results. Also converts co-trimoxazole to trimethprim component only.
#'
#' @export
#'
#' @examples
#' clean_raw_mic(c("==>64","0.25/8.0"))
clean_raw_mic <- function(mic) {
mic <- stringr::str_remove(mic, pattern = "^=+")
stringr::str_remove(mic, "/(.)+")
}
#' Uncensor MICs
#'
#'
#' @param mic vector of MICs to uncensor; will be coerced to MIC using AMR::as.mic
#' @param method method to uncensor MICs (scale, simple, or bootstrap)
#' @param scale scalar to multiply or divide MIC by (for method = scale)
#' @param ab antibiotic name (for method = bootstrap)
#' @param mo microorganism name (for method = bootstrap)
#' @param distros dataframe of epidemiological distributions (only used,
#' optionally, for method = bootstrap)
#'
#' @return vector of MICs in AMR::mic format
#'
#' @details
#' Censored MIC data is generally unsuitable for modelling without some
#' conversion of censored data. The default behaviour (method = scale) is to
#' halve MICs under the limit of detection (<=) and double MICs above the limit
#' of detection (>). When used with method = simple, this function effectively
#' just removes the censoring symbols, e.g., <=2 becomes 2, and >64 becomes 64.
#'
#' The bootstrap method is the more complex of the three available methods. It
#' attempts to use a second (uncensored) MIC distribution to sample values in
#' the censored range. These values are then used to populate and uncensor
#' the MIC data provided as input (mic). The second (uncensored) MIC
#' distribution is ideally provided from similar experimental conditions.
#' Alternatively, epidemiological distributions can be used. These distributions
#' should be provided as a dataframe to the distros argument. The format for
#' this dataframe is inspired by the EUCAST epidemiological distributions, see:
#' https://www.eucast.org/mic_and_zone_distributions_and_ecoffs. The dataframe
#' should contain columns for antimicrobial (converted using AMR::as.ab),
#' organism (converted using AMR::as.mo), and MIC concentrations. An example
#' is provided in the 'ecoffs' dataset available with this pacakge. Currently,
#' only Escherichia coli is available in this dataset. Each observation (row)
#' consists of the frequency a particular MIC concentration is observed in the
#' distribution. If such a dataframe is not provided to distros, the function
#' will attempt to use 'ecoffs', but remains limited to E. coli.
#'
#' @references https://www.eucast.org/mic_and_zone_distributions_and_ecoffs
#'
#' @export
#'
#' @examples
#' mic_uncensor(c(">64.0", "<0.25", "8.0"), method = "scale", scale = 2)
mic_uncensor <- function(mic,
method = "scale",
scale = 2,
ab = NULL,
mo = NULL,
distros = NULL) {
if (method == "scale") {
return(mic_uncensor_scale(mic, scale))
}
if (method == "simple") {
return(mic_uncensor_simple(mic))
}
if (method == "bootstrap") {
if (any(is.null(ab),
is.null(mo))) {
stop("For method = bootstrap, both ab and mo must be provided")
}
return(AMR::as.mic(mic_uncensor_bootstrap(mic = mic, ab = ab, mo = mo,
distros = distros)))
}
stop("Method must be scale, simple or bootstrap")
}
mic_uncensor_simple <- function(mic) {
AMR::as.mic(as.numeric(AMR::as.mic(mic)))
}
mic_uncensor_scale <- function(mic, scale) {
suppressWarnings(
dplyr::case_when(
stringr::str_detect(mic, ">") ~ AMR::as.mic(AMR::as.mic(stringr::str_remove(force_mic(mic), ">")) * scale),
stringr::str_detect(mic, "<") ~ AMR::as.mic(AMR::as.mic(stringr::str_remove(force_mic(mic), "<")) / scale),
.default = AMR::as.mic(force_mic(mic)))
)
}
mic_uncensor_bootstrap <- Vectorize(function(mic, ab, mo, distros) {
if (is.na(mic)) {
return(AMR::NA_mic_)
}
mic <- gsub("=", "", mic)
if (!startsWith(mic, "<") & !startsWith(mic, ">")) {
return(AMR::as.mic(mic))
}
ab <- AMR::as.ab(ab)
mic <- AMR::as.mic(mic)
if (!is.null(mo)) {
mo <- AMR::as.mo(mo)
}
if (is.null(distros)) {
message(
"No custom distributions provided to mic_uncensor using bootstrap method.
Using built-in epidemiological distributions from EUCAST:
https://www.eucast.org/mic_and_zone_distributions_and_ecoffs.
Note: Only Escherichia coli is currently supported.")
distros <- ecoffs
}
ecoff_sub <- distros[distros['antibiotic'] == ab & distros['organism'] == mo,]
ecoff_mics <- ecoff_sub[as.character(mic_range())]
if (nrow(ecoff_sub) == 0) {
warning("No ECOFFs available for ", ab)
return(mic)
}
if (startsWith(as.character(mic), "<")) {
ecoff_mics[AMR::as.mic(names(ecoff_mics)) > mic] <- 0
}
if (startsWith(as.character(mic), ">")) {
ecoff_mics[AMR::as.mic(names(ecoff_mics)) <= mic] <- 0
}
ecoff_mics <- sapply(ecoff_mics, as.numeric)
if (sum(ecoff_mics) == 0) {
warning(ab, "appears to be below or above epidemiological distribution,
performing a simple mic uncensor.")
return(mic_uncensor_simple(mic))
}
return(AMR::as.mic(sample(names(ecoff_mics), size = 1, replace=T, prob = ecoff_mics)))
},
USE.NAMES = F,
vectorize.args = c("mic", "ab", "mo"))
#' Censor MIC values
#'
#' @param mic MIC (coercible to AMR::as.mic)
#' @param ab antibiotic name (coercible to AMR::as.ab)
#' @param mo microorganism name (coercible to AMR::as.mo)
#' @param rules censor rules - named list of pathogen (in AMR::as.mo code) to
#' antibiotic (in AMR::as.ab code) to censoring rules. The censoring rules
#' should provide a min or max value to censor MICs to. See example for more.
#'
#' @return censored MIC values (S3 mic class)
#'
#' @description
#' MIC datasets often arise from different laboratories or experimental
#' conditions. In practice, this means that there can be different levels of
#' censoring (<= and >) within the data. This function can be used to harmonise
#' the dataset to a single level of censoring. The function requires a set of
#' rules that specify the censoring levels (see example).
#'
#' @export
#'
#' @examples
#' example_rules <- list("B_ESCHR_COLI" = list(
#' "AMK" = list(min = 2, max = 32),
#' "CHL" = list(min = 4, max = 64),
#' "GEN" = list(min = 1, max = 16),
#' "CIP" = list(min = 0.015, max = 4),
#' "MEM" = list(min = 0.016, max = 16),
#' "AMX" = list(min = 2, max = 64),
#' "AMC" = list(min = 2, max = 64),
#' "FEP" = list(min = 0.5, max = 64),
#' "CAZ" = list(min = 1, max = 128),
#' "TGC" = list(min = 0.25, max = 1)
#' ))
#'
#' mic_censor(AMR::as.mic(512),
#' "AMK",
#' "B_ESCHR_COLI",
#' example_rules) == AMR::as.mic(">32")
mic_censor <- function(mic, ab, mo, rules) {
mic_censor_vectorize <- Vectorize(
function(mic, ab, mo, rules) {
mic <- AMR::as.mic(mic)
min_thresh <- rules[[mo]][[ab]][["min"]]
min_thresh <- ifelse(is.null(min_thresh),
-Inf,
min_thresh)
max_thresh <- rules[[mo]][[ab]][["max"]]
max_thresh <- ifelse(is.null(max_thresh),
Inf,
max_thresh)
if (mic > max_thresh) {
return(paste0(">", max_thresh))
}
if (mic < min_thresh) {
return(paste0("<=", min_thresh))
}
return(mic)
},
USE.NAMES = FALSE,
vectorize.args = c("mic", "ab", "mo")
)
AMR::as.mic(mic_censor_vectorize(mic, ab, mo, rules))
}
#' Generate dilution series
#'
#' @param start starting (highest) concentration
#' @param dilutions number of dilutions
#' @param min minimum (lowest) concentration
#' @param precise force range to be high precision (not usually desired
#' behaviour)
#'
#' @return Vector of numeric concentrations
#' @export
#'
#' @examples
#' mic_range(128)
#' mic_range(128, dilutions = 21) # same results
mic_range <- function(start = 512,
dilutions = Inf,
min = 0.002,
precise = FALSE) {
recursive_inner <- function(start,
dilutions,
min) {
if (start[length(start)] < min) {
return(utils::head(start, -1))
}
if (dilutions == 0) {
return (start)
} else {
return(recursive_inner(c(start, start[length(start)] / 2),
dilutions - 1,
min))
}
}
if (precise) {
return(recursive_inner(start = start,
dilutions = dilutions,
min = min))
}
eucast_range <- c(512,
256,
128,
64,
32,
16,
8,
4,
2,
1,
0.5,
0.25,
0.125,
0.06,
0.03,
0.016,
0.008,
0.004,
0.002)
filtered_range <- eucast_range[eucast_range >= min & eucast_range <= start]
end_index <- ifelse(is.infinite(dilutions), length(filtered_range), dilutions)
return(filtered_range[1:end_index])
}
#' Force MIC-like into MIC-compatible format
#'
#' @description
#' Convert a value that is "almost" an MIC into a valid MIC value.
#'
#' @param value vector of MIC-like values (numeric or character)
#' @param levels_from_AMR conform to AMR::as.mic levels
#' @param max_conc maximum concentration to force to
#' @param min_conc minimum concentration to force to
#' @param method method to use when forcing MICs (closest or round_up)
#' @param prefer where value is in between MIC (e.g., 24mg/L) chose the higher
#' MIC ("max") or lower MIC ("min"); only applies to method = "closest"
#'
#' @details
#' Some experimental or analytical conditions measure MIC (or surrogate) in a
#' way that does not fully conform to traditional MIC levels
#' (i.e., concentrations). This function allows these values to be coerced into
#' an MIC value that is compatible with the AMR::mic class. When using method =
#' "closest", the function will choose the closest MIC value to the input value
#' (e.g., 2.45 will be coerced to 2). When using method = "round up", the
#' function will round up to the next highest MIC value (e.g., 2.45 will be
#' coerced to 4). "Round up" is technically the correct approach if the input
#' value was generated from an experiment that censored between concentrations
#' (e.g., broth or agar dilution). However, "closest" may be more appropriate in
#' some cases.
#'
#' @return AMR::as.mic compatible character
#' @export
#'
#' @examples
#' force_mic(c("2.32", "<4.12", ">1.01"))
force_mic <- function(value,
levels_from_AMR = FALSE,
max_conc = 512,
min_conc = 0.002,
method = "closest",
prefer = 'max') {
if (levels_from_AMR) {
mic_levels <- levels(AMR::as.mic(NA))
} else {
mic_levels <- mic_range(start = max_conc, min = min_conc)
mic_levels <- c(max(mic_levels) * 2,
mic_levels,
min(mic_levels) / 2)
mic_levels <- c(mic_levels,
paste0(">", mic_levels),
paste0("<", mic_levels))
}
output <- rep(NA_character_, length(value))
for (i in seq_along(value)) {
prefix <- NULL
inner_val <- value[i]
if (is.na(inner_val)) {
next
}
stopifnot(any(c(AMR::is.mic(inner_val), is.numeric(inner_val), is.character(inner_val), is.na(inner_val))))
if (AMR::is.mic(inner_val)) {
inner_val <- as.character(inner_val)
}
if (is.numeric(inner_val)) {
appropriate_levels <- subset(mic_levels, !stringr::str_detect(mic_levels, "[^0-9.]"))
}
if (is.character(inner_val)){
if (stringr::str_detect(inner_val, "<")) {
appropriate_levels <- subset(mic_levels, stringr::str_detect(mic_levels, "<"))
appropriate_levels <- stringr::str_remove_all(appropriate_levels, "[^0-9.]")
prefix <- "<"
} else if (stringr::str_detect(inner_val, ">")) {
appropriate_levels <- subset(mic_levels, stringr::str_detect(mic_levels, ">"))
appropriate_levels <- stringr::str_remove_all(appropriate_levels, "[^0-9.]")
prefix <- ">"
} else {
appropriate_levels <- subset(mic_levels, !stringr::str_detect(mic_levels, "[^0-9.]"))
}
inner_val <- stringr::str_remove_all(inner_val, "[^0-9.]")
inner_val <- as.numeric(inner_val)
}
mic_vector <- sort(as.numeric(appropriate_levels))
if (!method %in% c("closest", "round up")) {
stop("Method must be closest or round up")
}
if (method == "closest") {
positions <- which(abs(mic_vector - inner_val) == min(abs(mic_vector - inner_val)))
}
if (method == "round up") {
if (inner_val %in% mic_vector) {
positions <- which(mic_vector == inner_val)
} else {
positions <- min(which(inner_val < mic_vector))
}
}
if (length(positions) == 1) {
output[i] <- paste0(prefix, mic_vector[positions])
}
if (prefer == 'min') {
output[i] <- paste0(prefix, mic_vector[min(positions)])
}
if (inner_val > max_conc * 2) {
warning(paste("Value greater than supported MIC:", inner_val))
output[i] <- NA_character_
} else if (inner_val < min_conc / 2) {
warning(paste("Value less than supported MIC:", inner_val))
output[i] <- NA_character_
} else {
output[i] <- paste0(prefix, mic_vector[max(positions)])
}
}
return(output)
}
#' Essential agreement for MIC validation
#'
#' @description
#' Essential agreement calculation for comparing two MIC vectors.
#'
#' @param x AMR::mic or coercible
#' @param y AMR::mic or coercible
#' @param coerce_mic convert to AMR::mic
#' @param mode Categorical or numeric
#' @return logical vector
#' @export
#'
#' @details
#' Essential agreement is a central concept in the comparison of two sets of MIC
#' values. It is most often used when validating a new method against a gold
#' standard. This function reliably performs essential agreement in line with
#' ISO 20776-2:2021. The function can be used in two modes: categorical and
#' numeric. In categorical mode, the function will use traditional MIC
#' concentrations to determine the MIC (therefore it will use force_mic() to
#' convert both x and y to a clean MIC -- see ?force_mic()). In numeric mode,
#' the function will compare the ratio of the two MICs. In most cases,
#' categorical mode provides more reliable results. Values within +/- 2
#' dilutions are considered to be in essential agreement.
#'
#' @references
#' International Organization for Standardization. ISO 20776-2:2021
#' Available from: https://www.iso.org/standard/79377.html
#'
#' @examples
#' x <- AMR::as.mic(c("<0.25", "8", "64", ">64"))
#' y <- AMR::as.mic(c("<0.25", "2", "16", "64"))
#' essential_agreement(x, y)
#' # TRUE FALSE FALSE TRUE
essential_agreement <- function(x,
y,
coerce_mic = TRUE,
mode = "categorical") {
if (any(!AMR::is.mic(c(x, y))) & !coerce_mic) {
stop("Both MIC inputs to essential_agreement must be AMR::mic.
Convert using AMR::as.mic() with or without MIC::force_mic().")
}
if (mode == "categorical") {
x <- force_mic(mic_uncensor(x))
y <- force_mic(mic_uncensor(y))
index_diff <- purrr::map2_lgl(x,
y,
\(.x, .y) {
range <- mic_range()
range <- c(max(range) * 2,
range,
min(range) / 2)
if (any(is.na(c(.x, .y)))) {
return(NA)
}
if(abs(which(range == .x) - which(range == .y)) > 1) {
return(FALSE)
}
return(TRUE)
})
return(index_diff)
}
if (mode == "numerical") {
x <- as.numeric(mic_uncensor(x))
y <- as.numeric(mic_uncensor(y))
frac <- x / y
return(as.logical(
dplyr::case_when(
is.na(frac) ~ NA,
frac > 2.0 ~ FALSE,
frac < 0.5 ~ FALSE,
frac != 1.0 ~ TRUE,
TRUE ~ TRUE)))
}
stop("Mode must be categorical or numerical")
}
#' Compare and validate MIC values
#'
#' @param gold_standard vector of MICs to compare against.
#' @param test vector of MICs that are under investigation
#' @param ab character vector (same length as MIC) of antibiotic names (optional)
#' @param mo character vector (same length as MIC) of microorganism names (optional)
#' @param accept_ecoff if TRUE, ECOFFs will be used when no clinical breakpoints are available
#' @param simplify if TRUE, MIC values will be coerced into the closest halving
#' dilution (e.g., 0.55 will be converted to 0.5)
#'
#' @return S3 mic_validation object
#'
#' @description
#' This function compares an vector of MIC values to another. Generally, this is
#' in the context of a validation experiment -- an investigational assay or
#' method (the "test") is compared to a gold standard. The rules used by this
#' function are in line with "ISO 20776-2:2021 Part 2: Evaluation of performance
#' of antimicrobial susceptibility test devices against reference broth
#' micro-dilution."
#'
#' There are two levels of detail that are provided. If only the MIC values are
#' provided, the function will look for essential agreement between the two sets
#' of MIC. If the organism and antibiotic arguments are provided, the function
#' will also calculate the categorical agreement using EUCAST breakpoints (or,
#' if breakpoint not available and accept_ecoff = TRUE, ECOFFs).
#'
#' The function returns a special dataframe of results, which is also an
#' mic_validation object. This object can be summarised using summary() for
#' summary metrics, plotted using plot() for an essential agreement confusion
#' matrix, and tabulated using table().
#'
#' @export
#'
#' @examples
#' # Just using MIC values only
#' gold_standard <- c("<0.25", "8", "64", ">64")
#' test <- c("<0.25", "2", "16", "64")
#' val <- compare_mic(gold_standard, test)
#' summary(val)
#'
#' # Using MIC values and antibiotic and organism names
#' gold_standard <- c("<0.25", "8", "64", ">64")
#' test <- c("<0.25", "2", "16", "64")
#' ab <- c("AMK", "AMK", "AMK", "AMK")
#' mo <- c("B_ESCHR_COLI", "B_ESCHR_COLI", "B_ESCHR_COLI", "B_ESCHR_COLI")
#' val <- compare_mic(gold_standard, test, ab, mo)
#' "error" %in% names(val) # val now has categorical agreement
compare_mic <- function(gold_standard,
test,
ab = NULL,
mo = NULL,
accept_ecoff = FALSE,
simplify = TRUE) {
if (length(gold_standard) != length(test)) {
stop("Gold standard and test must be the same length")
}
gold_standard_mod <- gold_standard |>
force_mic(levels_from_AMR = !simplify) |>
AMR::as.mic()
test_mod <- test |>
force_mic(levels_from_AMR = !simplify) |>
AMR::as.mic()
output <- list(
gold_standard = gold_standard_mod,
test = test_mod,
essential_agreement = factor(essential_agreement(gold_standard_mod, test_mod),
levels = c(FALSE, TRUE))
)
if (!is.null(ab)) {
if (length(ab) == 1) {
ab <- rep(ab, length(gold_standard))
}
if (length(ab) > 1 & length(ab) != length(gold_standard)) {
stop("Antibiotic names must be the same length as MIC values, or single value")
}
output[["ab"]] <- ab
}
if (!is.null(mo)) {
if (length(mo) == 1) {
mo <- rep(mo, length(gold_standard))
}
if (length(mo) > 1 & length(mo) != length(gold_standard)) {
stop("Microorganism names must be the same length as MIC values, or single value")
}
output[["mo"]] <- mo
}
if (!is.null(ab) & !is.null(mo)) {
gold_standard_sir <- purrr::pmap_vec(list(gold_standard_mod,
mo,
ab), \(x, mo, ab) AMR::as.sir(x, mo = mo, ab = ab))
gold_standard_sir <- purrr::pmap_vec(list(gold_standard_mod,
mo,
ab,
gold_standard_sir), \(x, mo, ab, sir) {
if (is.na(sir)) {
if (accept_ecoff) {
message(paste("No clinical breakpoint for:", ab, mo, "using ECOFF"))
AMR::as.sir(x, mo = mo, ab = ab,
breakpoint_type = "ECOFF")
} else {
message(paste("No clinical breakpoint for:", ab, mo, "(use accept_ecoff to use ECOFF)"))
sir
}
} else {
sir
}
})
test_sir <- purrr::pmap_vec(list(test_mod,
mo,
ab), \(x, mo, ab) AMR::as.sir(x, mo = mo, ab = ab))
test_sir <- purrr::pmap_vec(list(test_mod,
mo,
ab,
test_sir), \(x, mo, ab, sir) {
if (is.na(sir)) {
if (accept_ecoff) {
message(paste("No clinical breakpoint for:", ab, mo, "using ECOFF"))
AMR::as.sir(x, mo = mo, ab = ab,
breakpoint_type = "ECOFF")
} else {
message(paste("No clinical breakpoint for:", ab, mo, "(use accept_ecoff to use ECOFF)"))
sir
}
} else {
sir
}
})
output[["gold_standard_sir"]] <- gold_standard_sir
output[["test_sir"]] <- test_sir
output[["error"]] <- compare_sir(gold_standard_sir,
test_sir)
}
class(output) <- append(class(output), "mic_validation", 0)
output
}
#' Print MIC validation object
#'
#' @param x mic_validation object
#' @param ... additional arguments
#'
#' @return character
#' @export
#'
#' @examples
#' gold_standard <- c("<0.25", "8", "64", ">64")
#' test <- c("<0.25", "2", "16", "64")
#' val <- compare_mic(gold_standard, test)
#' print(val)
print.mic_validation <- function(x, ...) {
if (!is.null(x$ab) & !is.null(x$mo)) {
antibiotic_str <- paste(unique(x$ab), collapse = ", ")
organism_str <- paste(unique(x$mo), collapse = ", ")
return(
cat(glue::glue("MIC validation object with {length(x$gold_standard)} observations
Agreement type: essential and categorical
Antibiotics: {antibiotic_str}
Organisms: {organism_str}"))
)
}
return(
cat(glue::glue("MIC validation object with {length(x$gold_standard)} observations
Agreement type: essential"))
)
}
plot_mic_validation_single_ab <- function(x, match_axes, ...) {
x <- x |>
dplyr::group_by(.data[["gold_standard"]],
.data[["test"]],
.data[["essential_agreement"]]) |>
dplyr::summarise(n = dplyr::n()) |>
dplyr::rename(`EA` = .data[["essential_agreement"]]) |>
ggplot2::ggplot(ggplot2::aes(x = .data[["gold_standard"]],
y = .data[["test"]],
fill = .data[["n"]],
color = .data[["EA"]])) +
ggplot2::geom_tile(alpha=1, show.legend = TRUE) +
ggplot2::geom_text(ggplot2::aes(label=.data[["n"]]), show.legend = TRUE) +
ggplot2::scale_fill_gradient(low="white", high="#009194") +
ggplot2::scale_fill_manual(values=c("red", "black"), aesthetics = "color", drop = FALSE) +
ggplot2::guides(color=ggplot2::guide_legend(override.aes=list(fill=NA))) +
ggplot2::theme_bw(base_size = 13) +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust=1)) +
ggplot2::xlab("Gold standard MIC (mg/L)") +
ggplot2::ylab("Test (mg/L)")
if (match_axes) {
x <- x + ggplot2::scale_x_discrete(drop = FALSE)
x <- x + ggplot2::scale_y_discrete(drop = FALSE)
}
x
}
plot_mic_validation_multi_ab <- function(x, match_axes,
facet_wrap_ncol,
facet_wrap_nrow,
...) {
x <- x |>
dplyr::group_by(.data[["gold_standard"]],
.data[["test"]],
.data[["essential_agreement"]],
.data[["ab"]]) |>
dplyr::mutate(ab = AMR::ab_name(AMR::as.ab(as.character(.data[["ab"]])))) |>
dplyr::mutate(ab = dplyr::if_else(is.na(.data[["ab"]]), "unknown", .data[["ab"]])) |>
dplyr::summarise(n = dplyr::n()) |>
dplyr::rename(`EA` = .data[["essential_agreement"]]) |>
ggplot2::ggplot(ggplot2::aes(x = .data[["gold_standard"]],
y = .data[["test"]],
fill = .data[["n"]],
color = .data[["EA"]])) +
ggplot2::geom_tile(alpha=1) +
ggplot2::geom_text(ggplot2::aes(label=.data[["n"]])) +
ggplot2::scale_fill_gradient(low="white", high="#009194") +
ggplot2::scale_fill_manual(values=c("red", "black"), aesthetics = "color", drop = FALSE)
if (any(!is.null(c(facet_wrap_ncol, facet_wrap_nrow)))) {
x <- x + lemon::facet_rep_wrap(~ .data[["ab"]],
nrow = facet_wrap_nrow,
ncol = facet_wrap_ncol,
repeat.tick.labels = TRUE)
}
x <- x +
ggplot2::guides(color=ggplot2::guide_legend(override.aes=list(fill=NA))) +
ggplot2::theme_bw(base_size = 13) +
ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust=1)) +
ggplot2::xlab("Gold standard MIC (mg/L)") +
ggplot2::ylab("Test (mg/L)")
if (match_axes) {
x <- x + ggplot2::scale_x_discrete(drop = FALSE)
x <- x + ggplot2::scale_y_discrete(drop = FALSE)
}
x
}
#' S breakpoint for MIC
#'
#' @param mo mo name (coerced using AMR::as.mo)
#' @param ab ab name (coerced using AMR::as.ab)
#' @param accept_ecoff if TRUE, ECOFFs will be used when no clinical breakpoints are available
#' @param ... additional arguments to pass to AMR::as.sir, which is used to
#' calculate the S breakpoint
#'
#' @return MIC value
#' @export
#'
#' @examples
#' mic_s_breakpoint("B_ESCHR_COLI", "AMK")
#' mic_s_breakpoint("B_ESCHR_COLI", "CHL", accept_ecoff = TRUE)
mic_s_breakpoint <- function(mo, ab, accept_ecoff = FALSE, ...) {
mic_range <- mic_range()
sir_range <- AMR::as.sir(AMR::as.mic(mic_range),
mo = mo,
ab = ab,
...)
if (any(is.na(sir_range))) {
if (accept_ecoff) {
sir_range <- AMR::as.sir(AMR::as.mic(mic_range),
mo = mo,
ab = ab,
breakpoint_type = "ECOFF",
...)
} else {
stop("No clinical breakpoints available for ", ab, mo, "(consider using accept_ecoff if appropriate.")
}
}
for (i in seq_along(sir_range)) {
if (sir_range[i] == "S") {
return(AMR::as.mic(mic_range[i]))
}
}
}
#' R breakpoint for MIC
#'
#' @param mo mo name (coerced using AMR::as.mo)
#' @param ab ab name (coerced using AMR::as.ab)
#' @param accept_ecoff if TRUE, ECOFFs will be used when no clinical breakpoints are available
#' @param ... additional arguments to pass to AMR::as.sir, which is used to
#' calculate the R breakpoint
#'
#' @return MIC value
#' @export
#'
#' @examples
#' mic_r_breakpoint("B_ESCHR_COLI", "AMK")
#' mic_r_breakpoint("B_ESCHR_COLI", "CHL", accept_ecoff = TRUE)
mic_r_breakpoint <- function(mo, ab, accept_ecoff = FALSE, ...) {
mic_range <- rev(mic_range())
sir_range <- AMR::as.sir(AMR::as.mic(mic_range),
mo = mo,
ab = ab,
...)
if (any(is.na(sir_range))) {
if (accept_ecoff) {
sir_range <- AMR::as.sir(AMR::as.mic(mic_range),
mo = mo,
ab = ab,
breakpoint_type = "ECOFF",
...)
} else {
stop("No clinical breakpoints available for ", ab, mo, "(consider using accept_ecoff if appropriate.")
}
}
for (i in seq_along(sir_range)) {
if (sir_range[i] == "R") {
return(AMR::as.mic(mic_range[i-1]))
}
}
}
match_levels <- function(x, match_to) {
if (!AMR::is.mic(x) | !AMR::is.mic(match_to)) {
stop("Both x and match_to must be AMR::mic objects")
}
all_levels <- levels(AMR::as.mic(NA))
keep_these <- levels(droplevels(match_to))
drop_these <- all_levels[!all_levels %in% keep_these]
x <- forcats::fct_drop(x, only = drop_these)
class(x) <- append(class(x), "mic", after = 0)
x
}
#' Fill MIC dilution levels
#'
#' @param x MIC vector
#' @param cap_upper If True, will the top level will be the highest MIC dilution in x
#' @param cap_lower If True, will the bottom level will be the lowest MIC dilution in x
#' @param as.mic By default, returns an ordered factor. Set as.mic = TRUE to return as AMR::mic
#'
#' @return ordered factor (or AMR::mic if as.mic = TRUE)
#' @export
#'
#' @examples
#' # use in combination with droplevels to clean up levels:
#' x <- AMR::as.mic(c("<0.25", "8", "64", ">64"))
#' x <- droplevels(x)
#' fill_dilution_levels(x)
fill_dilution_levels <- function(x,
cap_upper = TRUE,
cap_lower = TRUE,
as.mic = TRUE) {
mic_conc_range <- AMR::as.mic(mic_range())
if (cap_lower) {
mic_conc_range <- mic_conc_range[mic_conc_range >= min(AMR::as.mic(x))]
}
if (cap_upper) {
mic_conc_range <- mic_conc_range[mic_conc_range <= max(AMR::as.mic(x))]
}
x <- forcats::fct_expand(x, as.character(mic_conc_range))
new_levels <- levels(x)[order(match(levels(x),
as.character(levels(AMR::as.mic(NA)))))]
x <- ordered(x, levels = new_levels)
if (as.mic) {
class(x) <- append(class(x), "mic", after = 0)
}
x
}
#' Plot MIC validation results
#'
#' @param x object generated using compare_mic
#' @param match_axes Same x and y axis
#' @param add_missing_dilutions Axes will include dilutions that are not
#' @param facet_wrap_ncol Facet wrap into n columns by antimicrobial (optional,
#' only available when more than one antimicrobial in validation)
#' @param facet_wrap_nrow Facet wrap into n rows by antimicrobial (optional,
#' only available when more than one antimicrobial in validation)
#' represented in the data, based on a series of dilutions generated using mic_range().
#' @param ... additional arguments
#'
#' @return ggplot object
#'
#' @export
#'
#' @examples
#' gold_standard <- c("<0.25", "8", "64", ">64")
#' test <- c("<0.25", "2", "16", "64")
#' val <- compare_mic(gold_standard, test)
#' plot(val)
#'
#' # works with validation that includes categorical agreement
#' # categorical agreement is ignored
#' ab <- c("AMK", "AMK", "AMK", "AMK")
#' mo <- c("B_ESCHR_COLI", "B_ESCHR_COLI", "B_ESCHR_COLI", "B_ESCHR_COLI")
#' val <- compare_mic(gold_standard, test, ab, mo)
#' plot(val)
#'
#' # if the validation contains multiple antibiotics, i.e.,
#' ab <- c("CIP", "CIP", "AMK", "AMK")
#' val <- compare_mic(gold_standard, test, ab, mo)
#' # the following will plot all antibiotics in a single plot (pooled results)
#' plot(val)
#' # use the faceting arguments to split the plot by antibiotic
#' plot(val, facet_wrap_ncol = 2)
plot.mic_validation <- function(x,
match_axes = TRUE,
add_missing_dilutions = TRUE,
facet_wrap_ncol = NULL,
facet_wrap_nrow = NULL,
...) {
x <- as.data.frame(x)
# keep only columns needed for plotting
if (!"ab" %in% colnames(x)) {
x <- x[,c("gold_standard", "test", "essential_agreement")]
} else {
x <- x[,c("gold_standard", "test", "essential_agreement", "ab")]
}
if (match_axes) {
x[["gold_standard"]] <- match_levels(x[["gold_standard"]], match_to = x[["test"]])
x[["test"]] <- match_levels(x[["test"]], match_to = x[["gold_standard"]])
if (add_missing_dilutions) {
x[["gold_standard"]] <- fill_dilution_levels(x[["gold_standard"]])
x[["test"]] <- fill_dilution_levels(x[["test"]])
}
}
if (!"ab" %in% colnames(x) | length(unique(x[["ab"]])) == 1 |
all(is.null(c(facet_wrap_ncol, facet_wrap_nrow)))) {
p <- plot_mic_validation_single_ab(x, match_axes, ...)
if ("ab" %in% colnames(x) & "mo" %in% colnames(x)) {
bpoints <- AMR::clinical_breakpoints
p <- p + ggplot2::geom_hline(yintercept = AMR::as.mic(bpoints[]))
}
p
}
else {
p <- plot_mic_validation_multi_ab(x, match_axes = match_axes,
facet_wrap_ncol = facet_wrap_ncol,
facet_wrap_nrow = facet_wrap_nrow,
...)
p
}
}
#' Summary of MIC validation results
#'
#' @param object S3 mic_validation object
#' @param ... further optional parameters
#'
#' @export
#'
#' @return S3 mic_validation_summary object
#'
#' @description
#' Summarise the results of an MIC validation generated using compare_mic().
#'
#' @examples
#' gold_standard <- c("<0.25", "8", "64", ">64")
#' test <- c("<0.25", "2", "16", "64")
#' val <- compare_mic(gold_standard, test)
#' summary(val)
#' # or, for more detailed results
#' as.data.frame(summary(val))
summary.mic_validation <- function(object,
...) {
if (!"ab" %in% names(object) & !"mo" %in% names(object)) {
output <- list(EA_n = sum(object$essential_agreement == TRUE),
EA_pcent = sum(object$essential_agreement == TRUE) / length(object$essential_agreement),
bias = bias(object$gold_standard, object$test),
n = length(object$essential_agreement))
class(output) <- append(class(output), "mic_validation_summary", after = 0)
return(output)
}
if ("ab" %in% names(object) & !"mo" %in% names(object)) {
output <- object |>
as.data.frame() |>
dplyr::group_by(.data[["ab"]]) |>
dplyr::summarise(EA_n = sum(.data[["essential_agreement"]] == TRUE),
EA_pcent = sum(.data[["essential_agreement"]] == TRUE) / length(.data[["essential_agreement"]]),
bias = bias(object$gold_standard, object$test),
n = dplyr::n())
class(output) <- append(class(output), "mic_validation_summary", after = 0)
return(output)
}
if ("ab" %in% names(object) & "mo" %in% names(object)) {
output <- object |>
as.data.frame() |>
dplyr::group_by(.data[["ab"]], .data[["mo"]]) |>
dplyr::summarise(
EA_pcent = sum(.data[["essential_agreement"]] == TRUE) / length(.data[["essential_agreement"]]),
bias = bias(.data[["gold_standard"]], .data[["test"]]),
resistant_pcent = AMR::proportion_R(.data[["gold_standard_sir"]], minimum = 1, as_percent = FALSE) * 100,
minor_error_pcent = sum(.data[["error"]] == "m", na.rm = TRUE) / length(.data[["error"]]) * 100,
major_error_pcent = sum(.data[["error"]] == "M", na.rm = TRUE) / length(.data[["error"]]) * 100,
very_major_error_pcent = sum(.data[["error"]] == "vM", na.rm = TRUE) /length(.data[["error"]]) * 100,
EA_n = sum(.data[["essential_agreement"]] == TRUE),
resistant_n = AMR::count_resistant(.data[["gold_standard_sir"]]),
minor_error_n = sum(.data[["error"]] == "m", na.rm = TRUE),
major_error_n = sum(.data[["error"]] == "M", na.rm = TRUE),
very_major_error_n = sum(.data[["error"]] == "vM", na.rm = TRUE),
n = dplyr::n())
class(output) <- append(class(output), "mic_validation_summary", after = 0)
return(output)
}
}
#' Print MIC validation summary
#'
#' @param x mic_validation_summary object
#' @param ... additional arguments
#'
#' @return character
#' @export
#'
#' @examples
#' gold_standard <- c("<0.25", "8", "64", ">64")
#' test <- c("<0.25", "2", "16", "64")
#' val <- compare_mic(gold_standard, test)
#' print(summary(val))
print.mic_validation_summary <- function(x, ...) {
if (!"ab" %in% names(x) & !"mo" %in% names(x)) {
return(
cat(glue::glue("MIC validation summary
Essential agreement: {x$EA_n} ({round(x$EA_pcent * 100, 2)}%)
Bias: {x$bias}"))
)
}
if ("ab" %in% names(x) & !"mo" %in% names(x)) {
antibiotic_str <- paste(unique(x$ab), collapse = ", ")
return(
cat(glue::glue("MIC validation summary
Number of observations: {sum(x$n)}
Antibiotic: {antibiotic_str}
Essential agreement: {sum(x$EA_n)} ({round(sum(x$EA_n) / sum(x$n) * 100, 2)}%)
Mean bias: {mean(x$bias)}
*Use as.data.frame() to see full summary*"))
)
}
if (length(x) > 1 & "ab" %in% names(x) & "mo" %in% names(x)) {
antibiotic_str <- paste(unique(x$ab), collapse = ", ")
organism_str <- paste(unique(x$mo), collapse = ", ")
return(
cat(glue::glue("MIC validation summary
Antibiotic: {antibiotic_str}
Organism: {organism_str}
Essential agreement: {sum(x$EA_n)} ({round(sum(x$EA_n) / sum(x$n) * 100, 2)}%)
Resistant: {sum(x$resistant_n)} ({round(sum(x$resistant_n) / sum(x$n) * 100, 2)}%)
Minor errors: {sum(x$minor_error_n)} ({round(sum(x$minor_error_n) / sum(x$n) * 100, 2)}%)
Major errors: {sum(x$major_error_n)} ({round(sum(x$major_error_n) / sum(x$n) * 100, 2)}%)
Very major errors: {sum(x$very_major_error_n)} ({round(sum(x$very_major_error_n) / sum(x$n) * 100, 2)}%)
Mean bias: {mean(x$bias)}
N: {sum(x$n)}
*Use as.data.frame() to see full summary*"))
)
}
}
#' Check that MIC is within QC range
#'
#' @param measurement measured QC MIC
#' @param strain control strain identifier (usually ATCC)
#' @param ab antibiotic name (will be coerced to AMR::as.ab)
#' @param ignore_na ignores NA (returns TRUE)
#' @param guideline Guideline to use (EUCAST or CLSI)
#' @param year Guideline year (version)
#' @return logical vector
#'
#' @description
#' Check whether MIC values are within acceptable range for
#' quality control (QC). Every MIC experiment should include a control strain
#' with a known MIC. The results of the experiment are only valid if the control
#' strain MIC falls within the acceptable range. This function checks whether
#' an MIC result is within the acceptable range given: 1) a control strain
#' (usually identified as an ATCC or NCTC number), 2) an antibiotic name, and 3)
#' a guideline (EUCAST or CLSI). The acceptable range is defined by 'QC_table',
#' which is a dataset which is loaded with this package.
#'
#' The source of the QC values is the WHONET QC Ranges and Targets available from
#' the 'Antimicrobial Resistance Test Interpretation Engine' (AMRIE) repository:
#' https://github.com/AClark-WHONET/AMRIE
#'
#' @export
#' @references
#' O’Brien TF, Stelling JM. WHONET: An Information System for Monitoring
#' Antimicrobial Resistance. Emerg Infect Dis. 1995 Jun;1(2):66–66.
#' @examples
#' qc_in_range(AMR::as.mic(0.5), 25922, "GEN") == TRUE
#' qc_in_range(AMR::as.mic(8.0), 25922, "GEN") == FALSE
qc_in_range <- Vectorize(
function(measurement,
strain,
ab,
ignore_na = TRUE,
guideline = "EUCAST",
year = "2023") {
if (is.na(measurement) | is.na(strain) | is.na(ab)) {
if (ignore_na) {
return(TRUE)
} else {
return(FALSE)
}
}
if (!inherits(measurement, "mic") & !inherits(measurement, "disk")) {
stop("Measurement must be AMR::mic or AMR::disk")
}
ab <- as.character(AMR::as.ab(ab))
strain <- tolower(strain)
if (!startsWith(strain, "atcc")) {
strain <- paste0("atcc", strain)
}
qc_subset <- QC_table[QC_table$STRAIN == strain &
QC_table$ANTIBIOTIC == ab &
QC_table$GUIDELINE == guideline &
QC_table$YEAR == year &
QC_table$METHOD == "MIC", ]
if (nrow(qc_subset) == 0) {
# no QC info in table
return(NA)
}
stopifnot(nrow(qc_subset) == 1)
if (inherits(measurement, "mic")) {
measurement <- mic_uncensor(measurement)
if (measurement < AMR::as.mic(qc_subset[, "MINIMUM"])) {
return(FALSE)
}
if (measurement > AMR::as.mic(qc_subset[, "MAXIMUM"])) {
return(FALSE)
}
return(TRUE)
}
},
vectorize.args = c("measurement", "strain", "ab")
)
#' Check that QC measurement is at the required target
#' `r lifecycle::badge('experimental')`
#'
#' @param measurement measured QC MIC
#' @param strain control strain identifier (usually ATCC)
#' @param ab antibiotic name (will be coerced to AMR::as.ab)
#' @param ignore_na ignores NA (returns TRUE)
#' @param guideline Guideline to use (EUCAST or CLSI)
#' @param year Guideline year (version)
#' @description
#' MIC experiments should include a control strain with a known MIC.
#' The MIC result for the control strain should be a particular target MIC. This
#' function checks whether the target MIC was achieved given: 1) a control
#' strain (usually identified as an ATCC or NCTC number), 2) an antibiotic name,
#' and 3) a guideline (EUCAST or CLSI).
#'
#' Since QC target values are currently not publicly available in an easy to
#' use format, this function takes a pragmatic approach -- for most antibiotics
#' and QC strains, the target is assumed to be the midpoint of the acceptable
#' range. This approximation is not necessarily equal to the QC target reported
#' by guideline setting bodies such as EUCAST. Therefore, this function is
#' considered experimental and should be used with caution.
#'
#' This function can be used alongnside qc_in_range(), which checks whether the
#' MIC is within the acceptable range.
#'
#' The source of the QC values is the WHONET QC Ranges and Targets available from
#' the 'Antimicrobial Resistance Test Interpretation Engine' (AMRIE) repository:
#' https://github.com/AClark-WHONET/AMRIE
#'
#' @return logical vector
#' @export
#'
#' @references
#' O’Brien TF, Stelling JM. WHONET: An Information System for Monitoring
#' Antimicrobial Resistance. Emerg Infect Dis. 1995 Jun;1(2):66–66.
#'
#' @examples
#' qc_on_target(AMR::as.mic(0.5), 25922, "GEN") == TRUE
qc_on_target <- Vectorize(
function(measurement,
strain,
ab,
ignore_na = TRUE,
guideline = "EUCAST",
year = "2023") {
if (is.na(measurement) | is.na(strain) | is.na(ab)) {
if (ignore_na) {
return(TRUE)
} else {
return(FALSE)
}
}
if (!inherits(measurement, "mic") & !inherits(measurement, "disk")) {
stop("Measurement must be AMR::mic or AMR::disk")
}
ab <- as.character(AMR::as.ab(ab))
strain <- tolower(strain)
if (!startsWith(strain, "atcc")) {
strain <- paste0("atcc", strain)
}
qc_subset <- QC_table[QC_table$STRAIN == strain &
QC_table$ANTIBIOTIC == ab &
QC_table$GUIDELINE == guideline &
QC_table$YEAR == year & QC_table$METHOD == "MIC", ]
if (nrow(qc_subset) == 0) {
# no QC info in table
return(NA)
}
stopifnot(nrow(qc_subset) == 1)
if (inherits(measurement, "mic")) {
measurement <- mic_uncensor(measurement)
if (measurement < qc_subset[, "MINIMUM_TARGET"]) {
return(FALSE)
}
if (measurement > qc_subset[, "MAXIMUM_TARGET"]) {
return(FALSE)
}
return(TRUE)
}
},
vectorize.args = c("measurement", "strain", "ab")
)
#' Standardise MIC to control strain
#' `r lifecycle::badge('experimental')`
#'
#' @param test_measurement Measured MIC to standardise
#' @param qc_measurement Measured QC MIC to standardise to
#' @param strain control strain identifier (usually ATCC)
#' @param ab antibiotic name (will be coerced to AMR::as.ab)
#' @param prefer_upper Where the target MIC is a range, prefer the upper value
#' in the range
#' @param ignore_na Ignore NA (returns AMR::NA_mic_)
#' @param guideline Guideline to use (EUCAST or CLSI)
#' @param year Guideline year (version)
#' @param force Force into MIC-compatible format after standardisation
#'
#' @return AMR::mic vector
#' @export
#'
#' @description
#' MIC experiments are generally quality-controlled by including a control strain
#' with a known MIC. The MIC result for the control strain should be a particular
#' target MIC, or at least within an acceptable range. This function standardises
#' a measured MIC to the target MIC given: 1) a control strain (usually identified
#' as an ATCC or NCTC number), 2) an antibiotic name, and 3) a guideline (EUCAST
#' or CLSI). The definition of standardisation in this context is to adjust the
#' measured MIC based on the QC MIC. This is based on the following principles
#' and assumption:
#'
#' 1. A measured MIC is composed of two components: the true MIC and a
#' measurement error. The measurement error is considered to be inevitable when
#' measuring MICs, and is likely to be further composed of variability in
#' laboratory conditions and operator interpretation.
#' 2. It is assumed that the MIC of the control strain in the experiment has
#' also been affected by this error.
#'
#' The standardisation applied by this function uses the measured QC strain
#' MIC as a reference point, and scales the rest of the MICs to this reference.
#' In general, this means that the MICs are doubled or halved, depending on the
#' result of the QC MIC. A worked example is provided below and illustrates
#' the transformation that this function applies.
#'
#' There is no current evidence base for this approach, therefore, this
#' function is considered experimental and should be used with caution.
#'
#' @examples
#' # Ref strain QC MIC for GEN is 0.5
#' standardise_mic(
#' test_measurement = c(AMR::as.mic(">8.0"), # QC = 1, censored MIC remains censored
#' AMR::as.mic(4.0), # QC = 0.5 which is on target, so stays same
#' AMR::as.mic(2), # QC = 1, so scaled down to 1
#' AMR::as.mic(2)), # QC = 0.25, so scaled up to 8
#' qc_measurement = c(AMR::as.mic(1),
#' AMR::as.mic(0.5),
#' AMR::as.mic(1),
#' AMR::as.mic(0.25)),
#' strain = 25922,
#' ab = AMR::as.ab("GEN"))
standardise_mic <- function(test_measurement,
qc_measurement,
strain,
ab,
prefer_upper = FALSE,
ignore_na = TRUE,
guideline = "EUCAST",
year = "2023",
force = TRUE) {
standardise_mic_vectorised <- Vectorize(
function(test_measurement,
qc_measurement,
strain,
ab,
prefer_upper,
ignore_na,
guideline,
year,
force) {
if (is.na(test_measurement) | is.na(qc_measurement) | is.na(strain) | is.na(ab)) {
if (ignore_na) {
return(NA)
} else {
return(NA)
}
}
if (!inherits(test_measurement, "mic") | !inherits(qc_measurement, "mic")) {
stop("Measurements must be AMR::mic")
}
ab <- as.character(AMR::as.ab(ab))
mic_char <- as.character(test_measurement)
if (grepl("<|>", mic_char)) {
return(as.character(test_measurement))
}
if (qc_on_target(qc_measurement, strain, ab)) {
return(as.character(test_measurement))
}
if (!qc_in_range(qc_measurement, strain, ab)) {
warning("QC not in range, standardise_mic may not be appropriate")
}
strain <- tolower(strain)
if (!startsWith(strain, "atcc")) {
strain <- paste0("atcc", strain)
}
qc_subset <- QC_table[QC_table$STRAIN == strain & QC_table$ANTIBIOTIC == ab & QC_table$GUIDELINE == guideline & QC_table$YEAR == year & QC_table$METHOD == "MIC", ]
if (nrow(qc_subset) == 0) {
# no QC info in table
return(NA)
}
stopifnot(nrow(qc_subset) == 1)
if (qc_subset[1, "TARGET_ESTIMATED"]) {
warning(paste("Target for", ab, "is estimated as mid-point between upper
and lower range. EUCAST/CLSI guidance may be different."))
}
scale_factor_lower <- qc_subset[, "MINIMUM_TARGET"]
scale_factor_upper <- qc_subset[, "MAXIMUM_TARGET"]
if (scale_factor_lower == scale_factor_upper) {
scale_factor <- scale_factor_lower
} else{
if (prefer_upper) {
scale_factor <- scale_factor_upper
} else {
scale_factor <- scale_factor_lower
}
}
as.character(test_measurement * (scale_factor / qc_measurement))
},
vectorize.args = c("test_measurement",
"qc_measurement",
"strain",
"ab")
)
if (force) {
return(
AMR::as.mic(force_mic(standardise_mic_vectorised(test_measurement,
qc_measurement,
strain,
ab,
prefer_upper,
ignore_na,
guideline,
year)
)
))
}
AMR::as.mic(standardise_mic_vectorised(test_measurement,
qc_measurement,
strain,
ab,
prefer_upper,
ignore_na,
guideline,
year))
}
#' Compare SIR results and generate categorical agreement
#'
#' @param gold_standard Susceptibility results in AMR::sir format
#' @param test Susceptibility results in AMR::sir format
#'
#' @return factor vector with the following levels: M, vM, m.
#' @export
#'
#' @description
#' Compare two AMR::sir vectors and generate a categorical agreement vector with
#' the following levels: M (major error), vM (very major error), m (minor error).
#' The error definitions are:
#'
#' 1. Major error (M): The test result is resistant (R) when the gold standard
#' is susceptible (S).
#' 2. vM (very major error): The test result is susceptible (S) when the gold
#' standard is resistant (R).
#' 3. Minor error (m): The test result is intermediate (I) when the gold standard
#' is susceptible (S) or resistant (R), or vice versa.
#'
#' @examples
#' gold_standard <- c("S", "R", "I", "I")
#' gold_standard <- AMR::as.sir(gold_standard)
#' test <- c("S", "I", "R", "R")
#' test <- AMR::as.sir(test)
#' compare_sir(gold_standard, test)
compare_sir <- function(gold_standard, test) {
if (length(gold_standard) != length(test)) {
stop("Inputs to compare_sir must be same length")
}
if (!all(AMR::is.sir(gold_standard)) | !all(AMR::is.sir(test))) {
stop("Inputs to compare_sir must be AMR::sir objects")
}
return(
factor(
dplyr::case_when(
gold_standard == "S" & test == "I" ~ "m",
gold_standard == "R" & test == "I" ~ "m",
gold_standard == "I" & test == "S" ~ "m",
gold_standard == "I" & test == "R" ~ "m",
gold_standard == "S" & test == "R" ~ "M",
gold_standard == "R" & test == "S" ~ "vM",
TRUE ~ NA
),
levels = c("M", "vM", "m")
)
)
}
#' Calculate MIC bias
#'
#' @param gold_standard AMR::mic vector
#' @param test AMR::mic vector
#'
#' @return numeric value
#' @export
#'
#' @description
#' Calculate the bias between two AMR::mic vectors. The bias is calculated as
#' the percentage of test MICs that are above the gold standard MICs minus the
#' percentage of test MICs that are below the gold standard MICs.
#'
#' @references
#' International Organization for Standardization. ISO 20776-2:2021
#' Available from: https://www.iso.org/standard/79377.html
#'
#' @examples
#' gold_standard <- c("<0.25", "8", "64", ">64")
#' test <- c("<0.25", "2", "16", "64")
#' bias(gold_standard, test)
bias <- function(gold_standard, test) {
if (length(gold_standard) != length(test)) {
stop("Inputs to bias must be same length")
}
bias_above <- sum(test > gold_standard)
bias_below <- sum(test < gold_standard)
n <- length(gold_standard)
return(bias_above / n * 100 - bias_below / n * 100)
}
#' Table
#'
#' @param x an mic_validation object to be tabulated into an essential agreement
#' frequency table, or object/s to be passed to base::table
#' @param ... further arguments
#'
#' @rdname table
#' @export
#'
table <- function(x, ...) {
UseMethod("table")
}
#' @rdname table
#' @export
table.default <- function(x, ...) {
return(base::table(x, ...))
}
tabulate_flex <- function(t, ea, bold, ea_color, gold_standard_name, test_name) {
t_flex <- t |>
stats::addmargins(FUN = list(Total = sum),
quiet = TRUE) |>
as.data.frame.matrix() |>
tibble::rownames_to_column(var = "test_mics") |>
dplyr::mutate("test" = test_name, .before = "test_mics") |>
flextable::flextable()
for (i in 1:nrow(t)) {
for (j in 1:ncol(t)) {
if (ea[i, j] == TRUE) {
if (bold) {
t_flex <- flextable::bold(t_flex, i = i, j = j + 2)
}
if (!is.null(ea_color)) {
t_flex <- flextable::bg(t_flex, i = i, j = j + 2, bg = ea_color)
}
}
}
}
t_flex <- t_flex |>
flextable::set_header_labels("test_mics" = "", test = "") |>
flextable::add_header_row(values = c("", gold_standard_name, ""),
colwidths = c(1, length(t_flex[["col_keys"]]) - 2, 1)) |>
flextable::align(align = "center", i=1,j=2,part = "header") |>
flextable::align(align = "right", j=2) |>
flextable::merge_v(j = 1) |>
flextable::border_remove() |>
flextable::align(align = "right", part = "body")
t_flex
}
#' @rdname table
#'
#' @param x mic_validation S3 object
#' @param format simple or flextable
#' @param fill_dilutions Fill dilutions that are not present in the data in
#' order to match the y- and x- axes
#' @param bold Bold cells where essential agreement is TRUE
#' @param ea_color Background color for essential agreement cells
#' @param gold_standard_name Name of the gold standard to display in output
#' @param test_name Name of the test to display in output
#' @param ... further arguments
#'
#' @return table or flextable object
#'
#' @export
#'
#' @examples
#' gold_standard <- c("<0.25", "8", "64", ">64")
#' test <- c("<0.25", "2", "16", "64")
#' val <- compare_mic(gold_standard, test)
#' table(val)
table.mic_validation <- function(x,
format = 'flextable',
fill_dilutions = TRUE,
bold = TRUE,
ea_color = NULL,
gold_standard_name = "Gold Standard",
test_name = "Test",
...) {
test <- match_levels(x[["test"]], match_to = x[["gold_standard"]])
gold_standard <- match_levels(x[["gold_standard"]], match_to = x[["test"]])
if (fill_dilutions) {
test <- fill_dilution_levels(test)
gold_standard <- fill_dilution_levels(gold_standard)
}
t <- table(test,
gold_standard)
rnames <- rownames(t)
cnames <- colnames(t)
grid <- expand.grid(rnames, cnames)
ea <- essential_agreement(as.character(grid$Var1), as.character(grid$Var2))
ea <- matrix(ea, nrow = length(rnames))
ea <- as.data.frame(ea)
if (format == "simple") {
return(t)
}
if (format == "flextable") {
return(tabulate_flex(t, ea, bold, ea_color, gold_standard_name, test_name))
}
stop("Format must be simple or flextable")
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.