Nothing
#' Post Clustering Curation of Amplicon Data.
#'
#' @description
#'
#' <a href="https://adrientaudiere.github.io/MiscMetabar/articles/Rules.html#lifecycle">
#' <img src="https://img.shields.io/badge/lifecycle-stable-green" alt="lifecycle-stable"></a>
#'
#' The original function and documentation was written by Tobias Guldberg Frøslev
#' in the [lulu](https://github.com/tobiasgf/lulu) package.
#'
#' This algorithm \code{lulu} consumes an OTU table and a matchlist, and
#' evaluates cooccurence of 'daughters' (potential analytical artefacts) and
#' their 'parents' (~= real biological species/OTUs). The algorithm requires an
#' OTU table (species/site matrix), and a match list. The OTU table can be
#' made with various r-packages (e.g. \code{DADA2}) or
#' external pipelines (\code{VSEARCH, USEARCH, QIIME}, etc.), and the
#' match-list can be made with external bioinformatic tools like
#' \code{VSEARCH, USEARCH, BLASTN} or another algorithm
#' for pair-wise sequence matching.
#' @param otu_table a data.frame with with an OTU table that has sites/samples as
#' columns and OTUs (unique OTU id's) as rows, and observations as read
#' counts.
#' @param matchlist a data.frame containing three columns: (1) OTU id of
#' potential child, (2) OTU id of potential parent, (3) match - % identiti
#' between the sequences of the potential parent and potential child OTUs.
#' \strong{NB: The matchlist is the product of a mapping of OTU sequences against each other. This is
#' currently carried out by an external script in e.g. Blastn or VSEARCH, prior to running lulu!}
#' @param minimum_ratio_type sets whether a potential error must have lower
#' abundance than the parent in all samples \code{min} (default), or if an error
#' just needs to have lower abundance on average \code{avg}. Choosing lower
#' abundance on average over globally lower abundance will greatly increase
#' the number of designated errors. This option was introduced to make it
#' possible to account for non-sufficiently clustered intraspecific variation,
#' but is not generally recommended, as it will also increase the potential of
#' cluster well-separated, but co-occuring, sequence similar species.
#' @param minimum_ratio sets the minimim abundance ratio between a potential error
#' and a potential parent to be identified as an error. If the \code{minimum_ratio_type} is
#' set to \code{min} (default), the \code{minimum_ratio} applies to the lowest observed
#' ration across the samples. If the \code{minimum_ratio_type} is
#' set to \code{avg} (default), the \code{minimum_ratio} applies to the mean of observed
#' ration across the samples.\code{avg}. (default is 1).
#' @param minimum_match minimum threshold of sequence similarity
#' for considering any OTU as an error of another can be set (default 84%).
#' @param minimum_relative_cooccurence minimum co-occurrence rate, i.e. the
#' lower rate of occurrence of the potential error explained by co-occurrence
#' with the potential parent for considering error state.
#' @param progress_bar (Logical, default TRUE) print progress during the calculation or not.
#' @param log_conserved (Logical, default FALSE) conserved log files writed in the disk
#' @return Function \code{lulu} returns a list of results based on the input OTU
#' table and match list.
#'
#' - \code{curated_table} - a curated
#' OTU table with daughters merged with their matching parents.
#' - \code{curated_count} - number of curated (parent) OTUs.
#' - \code{curated_otus} - ids of the OTUs that were accepted as valid OTUs.
#' - \code{discarded_count} - number of discarded (merged with parent) OTUs.
#' - \code{discarded_otus} - ids of the OTUs that were identified as
#' errors (daughters) and merged with respective parents.
#' - \code{runtime} - time used by the script.
#' - \code{minimum_match} - the id threshold
#' (minimum match \% between parent and daughter) for evaluating co-occurence (set
#' by user).
#' - \code{minimum_relative_cooccurence} - minimum ratio of
#' daughter-occurences explained by co-occurence with parent (set by user).
#' - \code{otu_map} - information of which daughters were mapped to which
#' parents.
#' - \code{original_table} - original OTU table.
#'
#' The matchlist is the product of a mapping of OTU sequences against each other. This is
#' currently carried out by an external script in e.g. BLASTN or VSEARCH, prior to running \code{lulu}!
#' Producing the match list requires a file with all the OTU sequences (centroids) - e.g. \code{OTUcentroids.fasta}. The matchlist can be produced by mapping all OTUs against each other with an external algorithm like VSEARCH or BLASTN. In \code{VSEARCH} a matchlist can be produced e.g. with the following command: \code{vsearch --usearch_global OTUcentroids.fasta --db OTUcentroids.fasta --strand plus --self --id .80 --iddef 1 --userout matchlist.txt --userfields query+target+id --maxaccepts 0 --query_cov .9 --maxhits 10}. In \code{BLASTN} a matchlist can be produces e.g. with the following commands. First we produce a blast-database from the fasta file: \code{makeblastdb -in OTUcentroids.fasta -parse_seqids -dbtype nucl}, then we match the centroids against that database: \code{blastn -db OTUcentoids.fasta -num_threads 10 -outfmt'6 qseqid sseqid pident' -out matchlist.txt -qcov_hsp_perc .90 -perc_identity .84 -query OTUcentroids.fasta}
#'
#' @importFrom utils setTxtProgressBar txtProgressBar
#' @importFrom stats ave kruskal.test
#' @details
#' Please cite the lulu original paper: https://www.nature.com/articles/s41467-017-01312-x
#' @author Tobias Guldberg Frøslev (orcid: [0000-0002-3530-013X](https://orcid.org/0000-0002-3530-013X)),
#' modified by Adrien Taudière
#' @export
lulu <- function(otu_table, matchlist, minimum_ratio_type = "min", minimum_ratio = 1, minimum_match = 84, minimum_relative_cooccurence = 0.95, progress_bar = TRUE, log_conserved = FALSE) {
start.time <- Sys.time()
otutable <- otu_table
colnames(matchlist) <- c("OTUid", "hit", "match")
# remove no hits (vsearch)
matchlist <- matchlist[which(matchlist$hit != "*"), ]
# remove self-hits
matchlist <- matchlist[which(matchlist$hit != matchlist$OTUid), ]
# Making a separate table with stats (total readcount and spread).
statistics_table <- otutable[, 0]
statistics_table$total <- rowSums(otutable)
# calculating spread (number of presences (samples with 1+ read) pr OTU)
statistics_table$spread <- rowSums(otutable > 0)
statistics_table <- statistics_table[with(
statistics_table,
order(spread,
total,
decreasing = TRUE
)
), ]
otutable <- otutable[match(
row.names(statistics_table),
row.names(otutable)
), ]
statistics_table$parent_id <- "NA"
log_con <- file(paste0("lulu.log_", format(start.time, "%Y%m%d_%H%M%S")),
open = "a"
)
# make a progressline
pb <- txtProgressBar(
min = 0, # Minimum value of the progress bar
max = nrow(statistics_table), # Maximum value of the progress bar
style = 3, # Progress bar style (also available style = 1 and style = 2)
width = 50, # Progress bar width. Defaults to getOption("width")
char = "="
) # Character used to create the bar
for (line in seq(1, nrow(statistics_table))) {
if (progress_bar) {
setTxtProgressBar(pb, line)
}
potential_parent_id <- row.names(otutable)[line]
message(paste0("\n", "####processing: ", potential_parent_id, " #####"),
file = log_con
)
daughter_samples <- otutable[line, ]
hits <- matchlist[which(matchlist$OTUid == potential_parent_id &
matchlist$match > minimum_match), "hit"]
message(paste0("\n", "---hits: ", hits), file = log_con)
last_relevant_entry <- sum(statistics_table$spread >=
statistics_table$spread[line])
potential_parents <- which(row.names(otutable)[1:last_relevant_entry]
%in% hits)
message(paste0(
"\n", "---potential parent: ",
row.names(statistics_table)[potential_parents]
), file = log_con)
success <- FALSE
if (length(potential_parents) > 0) {
for (line2 in potential_parents) {
message(paste0("\n", "------checking: ", row.names(statistics_table)[line2]),
file = log_con
)
if (!success) {
relative_cooccurence <-
sum((daughter_samples[otutable[line2, ] > 0]) > 0) /
sum(daughter_samples > 0)
message(paste0(
"\n", "------relative cooccurence: ",
relative_cooccurence
), file = log_con)
if (relative_cooccurence >= minimum_relative_cooccurence) {
message(paste0(" which is sufficient!"), file = log_con)
if (minimum_ratio_type == "avg") {
relative_abundance <-
mean(otutable[line2, ][daughter_samples > 0] /
daughter_samples[daughter_samples > 0])
message(paste0(
"\n", "------mean avg abundance: ",
relative_abundance
), file = log_con)
} else {
relative_abundance <-
min(otutable[line2, ][daughter_samples > 0] /
daughter_samples[daughter_samples > 0])
message(paste0(
"\n", "------min avg abundance: ",
relative_abundance
), file = log_con)
}
if (relative_abundance > minimum_ratio) {
message(paste0(" which is OK!"), file = log_con)
if (line2 < line) {
statistics_table$parent_id[line] <-
statistics_table[row.names(otutable)[line2], "parent_id"]
message(
paste0(
"\n", "SETTING ",
potential_parent_id, " to be an ERROR of ",
(statistics_table[
row.names(otutable)[line2],
"parent_id"
]), "\n"
),
file = log_con
)
} else {
statistics_table$parent_id[line] <- row.names(otutable)[line2]
message(paste0(
"\n", "SETTING ", potential_parent_id,
" to be an ERROR of ", (row.names(otutable)[line2]),
"\n"
), file = log_con)
}
success <- TRUE
}
}
}
}
}
if (!success) {
statistics_table$parent_id[line] <- row.names(statistics_table)[line]
message(paste0("\n", "No parent found!", "\n"), file = log_con)
}
}
close(log_con)
total_abundances <- rowSums(otutable)
curation_table <- cbind(nOTUid = statistics_table$parent_id, otutable)
statistics_table$curated <- "merged"
curate_index <- row.names(statistics_table) == statistics_table$parent_id
statistics_table$curated[curate_index] <- "parent"
statistics_table <- transform(statistics_table,
rank = ave(total, FUN = function(x) {
rank(-x, ties.method = "first")
})
)
curation_table <- as.data.frame(curation_table %>%
group_by(nOTUid) %>%
summarise_all(list(sum)))
row.names(curation_table) <- as.character(curation_table$nOTUid)
curation_table <- curation_table[, -1]
curated_otus <- names(table(statistics_table$parent_id))
curated_count <- length(curated_otus)
discarded_otus <- setdiff(row.names(statistics_table), curated_otus)
discarded_count <- length(discarded_otus)
end.time <- Sys.time()
time.taken <- end.time - start.time
result <- list(
curated_table = curation_table,
curated_count = curated_count,
curated_otus = curated_otus,
discarded_count = discarded_count,
discarded_otus = discarded_otus,
runtime = time.taken,
minimum_match = minimum_match,
minimum_relative_cooccurence = minimum_relative_cooccurence,
otu_map = statistics_table,
original_table = otutable
)
if (!log_conserved) {
file.remove(list.files(pattern = "lulu.log_"))
}
return(result)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.