Area Under the Curve (AUC) is a commonly-used metric for assessing exposure to a drug. Many variants of AUC exist, and the information below will assist in determining both the appropriate AUC and how to calculate it.
cat("ggplot2 is required for this vignette to work correctly. Please install the ggplot2 library and retry building the vignette.")
For the below examples, the following data will be used.
suppressPackageStartupMessages({ library(PKNCA) library(dplyr) library(cowplot) library(knitr) library(ggplot2) }) scale_colour_discrete <- scale_colour_hue scale_fill_discrete <- scale_fill_hue my_conc <- data.frame(conc=c(0, 2.5, 3, 2, 1.5, 1.2, 1.1, 0, 0), time=c(0:5, 8, 12, 24), subject=1) my_conc$BLQ <- my_conc$conc == 0 my_conc$measured <- TRUE
ggplot(my_conc, aes(x=time, y=conc, shape=BLQ, group=subject)) + geom_line() + geom_point(size=4) + scale_x_continuous(breaks=my_conc$time) + theme(legend.position=c(0.8, 0.8))
For the purpose of illustration, NCA parameters will also be calculated for each of the AUC types below. Note that in the results, more parameters are returned than were requested. The additional parameters are the set of parameters required to calculate the requested parameters.
conc_obj <- PKNCAconc(my_conc, conc~time|subject) data_obj <- PKNCAdata(data.conc=conc_obj, intervals=data.frame(start=0, end=24, aucall=TRUE, auclast=TRUE, aucinf.pred=TRUE, aucinf.obs=TRUE)) results_obj <- pk.nca(data_obj) kable(as.data.frame(results_obj))
AUC~0-last~ calculates the AUC from time 0 to the last value above the limit of quantification, tlast
(within PKNCA, this is the last value above 0). In the figure below, AUC~0-last~ integrate the shaded region. Integration after tlast
is 0.
tlast <- pk.calc.tlast(conc=my_conc$conc, time=my_conc$time) tlast my_conc$include_auclast <- my_conc$time <= tlast
ggplot(my_conc, aes(x=time, y=conc, shape=BLQ, group=subject)) + geom_ribbon(data=my_conc[my_conc$include_auclast,], aes(ymin=0, ymax=conc), fill="lightblue") + geom_line() + geom_point(size=4) + scale_x_continuous(breaks=my_conc$time) + theme(legend.position=c(0.8, 0.8))
AUC~all~ starts with AUC~0-last~ and then integrates from tlast
to the first point after tlast
with a linear interpolation to zero. From the second point after tlast
to $\infty$ is considered zero.
first_after_tlast <- my_conc$time[my_conc$time > tlast][1] first_after_tlast my_conc$include_aucall <- my_conc$time <= first_after_tlast
ggplot(my_conc, aes(x=time, y=conc, shape=BLQ, group=subject)) + geom_ribbon(data=my_conc[my_conc$include_aucall,], aes(ymin=0, ymax=conc), fill="lightblue") + geom_line() + geom_point(size=4) + scale_x_continuous(breaks=my_conc$time) + theme(legend.position=c(0.8, 0.8))
AUC~0-$\infty$~ is commonly used for single-dose data. It calculates the AUC~0-last~ and then extrapolates to $\infty$ using the estimated half-life. Two starting points are used to estimate from tlast
to $\infty$, the observed or half-life predicted concentration at tlast
(clast.obs
and clast.pred
).
The two figures below illustrate the integration with AUC~0-$\infty$,obs~ and AUC~0-$\infty$,pred$. The difference between the tow figures is most evident at time=8 where there is a discontinuity in integration at tlast
due to using clast.pred
after that point and clast.obs
before that point. (To illustrate the integration differences, BLQ indicator shapes have been removed. BLQ is handled identically to previous figures.)
# Add one row to illustrate extrapolation beyond observed data my_conc <- rbind(my_conc, data.frame(conc=NA, time=36, subject=1, BLQ=NA, measured=FALSE, include_auclast=FALSE, include_aucall=FALSE)) # Extrapolate concentrations for aucinf.obs my_conc$conc_aucinf.obs <- my_conc$conc my_conc$conc_aucinf.obs[my_conc$BLQ | is.na(my_conc$BLQ)] <- interp.extrap.conc(conc=my_conc$conc, time=my_conc$time, time.out=my_conc$time[my_conc$BLQ | is.na(my_conc$BLQ)], lambda.z=as.data.frame(results_obj)$PPORRES[as.data.frame(results_obj)$PPTESTCD %in% "lambda.z"]) # Extrapolate concentrations for aucinf.pred my_conc$conc_aucinf.pred <- my_conc$conc my_conc$conc_aucinf.pred[my_conc$BLQ | is.na(my_conc$BLQ)] <- interp.extrap.conc(conc=my_conc$conc, time=my_conc$time, time.out=my_conc$time[my_conc$BLQ | is.na(my_conc$BLQ)], lambda.z=as.data.frame(results_obj)$PPORRES[as.data.frame(results_obj)$PPTESTCD %in% "lambda.z"], clast=as.data.frame(results_obj)$PPORRES[as.data.frame(results_obj)$PPTESTCD %in% "clast.pred"]) my_conc$conc_aucinf.pred[my_conc$time == tlast] <- as.data.frame(results_obj)$PPORRES[as.data.frame(results_obj)$PPTESTCD %in% "clast.pred"]
ggplot(my_conc[!is.na(my_conc$conc),], aes(x=time, y=conc, #shape=BLQ, group=subject)) + geom_ribbon(data=my_conc, aes(ymin=0, ymax=conc_aucinf.obs), fill="lightblue") + geom_line() + #geom_point(size=2) + scale_x_continuous(breaks=my_conc$time) + theme(legend.position=c(0.8, 0.8)) + labs(title="Extrapolation using AUCinf,obs") ggplot(my_conc[!is.na(my_conc$conc),], aes(x=time, y=conc, #shape=BLQ, group=subject)) + geom_ribbon( data=arrange( bind_rows(mutate(my_conc, before=FALSE), mutate(filter(my_conc, time == tlast), conc_aucinf.pred=conc, before=TRUE)), time, desc(before)), aes(ymin=0, ymax=conc_aucinf.pred), fill="lightblue") + geom_line() + #geom_point(size=2) + scale_x_continuous(breaks=my_conc$time) + theme(legend.position=c(0.8, 0.8)) + labs(title="Extrapolation using AUCinf,pred")
Partial AUCs integrate part of the area within a time range of interest. Partial AUCs are often of interest to assess bioequivalence with more detail than AUC~0-$\infty$~ or AUC~0-last~ may indicate. Within PKNCA, partial AUCs are treated like AUC~last~ with start and end times separately selected. (In a future version of PKNCA, they will be more simply calculated using an AUC~interval~.)
When the starting and ending times are observed within the data, partial AUCs can be calculated using the parameter auclast
as illustrated below.
# Interpolation not required data_obs_obj <- PKNCAdata(conc_obj, intervals=data.frame(start=0, end=2, auclast=TRUE)) results_obs_obj <- pk.nca(data_obs_obj) kable(as.data.frame(results_obs_obj))
When the starting and ending times are not observed within the data or when samples are below the limit of quantification, concentrations must be interpolated and added to the dataset before calculation as illustrated below.
# Interpolation required my_conc_interp <- arrange( bind_rows( my_conc, data.frame(conc=interp.extrap.conc(conc=my_conc$conc, time=my_conc$time, time.out=1.5), time=1.5, subject=1)), time) kable(my_conc_interp) conc_interp_obj <- PKNCAconc(my_conc_interp, conc~time|subject) data_interp_obj <- PKNCAdata(conc_interp_obj, intervals=data.frame(start=0, end=1.5, auclast=TRUE)) results_interp <- pk.nca(data_interp_obj) as.data.frame(results_interp)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.