View source: R/visualization_tsne.R
riem.tsne | R Documentation |
Given N observations X_1, X_2, …, X_N \in \mathcal{M}, t-SNE mimicks the pattern of probability distributions over pairs of manifold-valued objects on low-dimensional target embedding space by minimizing Kullback-Leibler divergence.
riem.tsne(riemobj, ndim = 2, geometry = c("intrinsic", "extrinsic"), ...)
riemobj |
a S3 |
ndim |
an integer-valued target dimension. |
geometry |
(case-insensitive) name of geometry; either geodesic ( |
... |
extra parameters for |
a named list containing
an (N\times ndim) matrix whose rows are embedded observations.
discrepancy between embedded and original distances as a measure of error.
#------------------------------------------------------------------- # Example on Sphere : a dataset with three types # # 10 perturbed data points near (1,0,0) on S^2 in R^3 # 10 perturbed data points near (0,1,0) on S^2 in R^3 # 10 perturbed data points near (0,0,1) on S^2 in R^3 #------------------------------------------------------------------- ## GENERATE DATA mydata = list() for (i in 1:20){ tgt = c(1, stats::rnorm(2, sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 21:40){ tgt = c(rnorm(1,sd=0.1),1,rnorm(1,sd=0.1)) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } for (i in 41:60){ tgt = c(stats::rnorm(2, sd=0.1), 1) mydata[[i]] = tgt/sqrt(sum(tgt^2)) } myriem = wrap.sphere(mydata) mylabs = rep(c(1,2,3), each=20) ## RUN THE ALGORITHM IN TWO GEOMETRIES mypx = 5 embed2int = riem.tsne(myriem, ndim=2, geometry="intrinsic", perplexity=mypx) embed2ext = riem.tsne(myriem, ndim=2, geometry="extrinsic", perplexity=mypx) ## VISUALIZE opar = par(no.readonly=TRUE) par(mfrow=c(1,2), pty="s") plot(embed2int$embed, main="intrinsic t-SNE", col=mylabs, pch=19) plot(embed2ext$embed, main="extrinsic t-SNE", col=mylabs, pch=19) par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.