View source: R/utility_rmvnorm.R
rmvnorm | R Documentation |
In \mathbf{R}^p, random samples are drawn
X_1,X_2,…,X_n~ \sim ~ \mathcal{N}(μ, Σ)
where μ \in \mathbf{R}^p is a mean vector and Σ \in \textrm{SPD}(p) is a positive definite covariance matrix.
rmvnorm(n = 1, mu, sigma)
n |
the number of samples to be generated. |
mu |
mean vector. |
sigma |
covariance matrix. |
either (1) a length-p vector (n=1) or (2) an (n\times p) matrix where rows are random samples.
#------------------------------------------------------------------- # Generate Random Data and Compare with Empirical Covariances # # In R^5 with zero mean and diagonal covariance, # generate 100 and 200 observations and compute MLE covariance. #------------------------------------------------------------------- ## GENERATE DATA mymu = rep(0,5) mysig = diag(5) ## MLE FOR COVARIANCE smat1 = stats::cov(rmvnorm(n=100, mymu, mysig)) smat2 = stats::cov(rmvnorm(n=200, mymu, mysig)) ## VISUALIZE opar <- par(no.readonly=TRUE) par(mfrow=c(1,3), pty="s") image(mysig[,5:1], axes=FALSE, main="true covariance") image(smat1[,5:1], axes=FALSE, main="empirical cov with n=100") image(smat2[,5:1], axes=FALSE, main="empirical cov with n=200") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.