spnorm | R Documentation |
We provide tools for an isotropic spherical normal (SN) distributions on a (p-1)-sphere in \mathbf{R}^p for sampling, density evaluation, and maximum likelihood estimation of the parameters where the density is defined as
f_{SN}(x; μ, λ) = \frac{1}{Z(λ)} \exp ≤ft( -\frac{λ}{2} d^2(x,μ) \right)
for location and concentration parameters μ and λ respectively and the normalizing constant Z(λ).
dspnorm(data, mu, lambda, log = FALSE) rspnorm(n, mu, lambda) mle.spnorm(data, method = c("Newton", "Halley", "Optimize", "DE"), ...)
data |
data vectors in form of either an (n\times p) matrix or a length-n list. See |
mu |
a length-p unit-norm vector of location. |
lambda |
a concentration parameter that is positive. |
log |
a logical; |
n |
the number of samples to be generated. |
method |
an algorithm name for concentration parameter estimation. It should be one of |
... |
extra parameters for computations, including
|
dspnorm
gives a vector of evaluated densities given samples. rspnorm
generates
unit-norm vectors in \mathbf{R}^p wrapped in a list. mle.spnorm
computes MLEs and returns a list
containing estimates of location (mu
) and concentration (lambda
) parameters.
hauberg_2018_DirectionalStatisticsSphericalRiemann
\insertRefyou_2022_ParameterEstimationModelbasedRiemann
# ------------------------------------------------------------------- # Example with Spherical Normal Distribution # # Given a fixed set of parameters, generate samples and acquire MLEs. # Especially, we will see the evolution of estimation accuracy. # ------------------------------------------------------------------- ## DEFAULT PARAMETERS true.mu = c(1,0,0,0,0) true.lbd = 5 ## GENERATE DATA N=1000 big.data = rspnorm(1000, true.mu, true.lbd) ## ITERATE FROM 50 TO 1000 by 10 idseq = seq(from=50, to=1000, by=10) nseq = length(idseq) hist.mu = rep(0, nseq) hist.lbd = rep(0, nseq) for (i in 1:nseq){ small.data = big.data[1:idseq[i]] # data subsetting small.MLE = mle.spnorm(small.data) # compute MLE hist.mu[i] = acos(sum(small.MLE$mu*true.mu)) # difference in mu hist.lbd[i] = small.MLE$lambda } ## VISUALIZE opar <- par(no.readonly=TRUE) par(mfrow=c(1,2)) plot(idseq, hist.mu, "b", pch=19, cex=0.5, main="difference in location") plot(idseq, hist.lbd, "b", pch=19, cex=0.5, main="concentration param") abline(h=true.lbd, lwd=2, col="red") par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.