stiefel.utest: Test of Uniformity on Stiefel Manifold

Description Usage Arguments Value References See Also Examples

View source: R/special_stiefel.R

Description

Given the data on Stiefel manifold St(k,p), it tests whether the data is distributed uniformly.

Usage

1
stiefel.utest(stobj, method = c("Rayleigh", "RayleighM"))

Arguments

stobj

a S3 "riemdata" class for N Stiefel-valued data.

method

(case-insensitive) name of the test method containing

"Rayleigh"

original Rayleigh statistic.

"RayleighM"

modified Rayleigh statistic with better order of error.

Value

a (list) object of S3 class htest containing:

statistic

a test statistic.

p.value

p-value under H_0.

alternative

alternative hypothesis.

method

name of the test.

data.name

name(s) of provided sample data.

References

\insertRef

chikuse_statistics_2003Riemann

\insertRef

mardia_directional_1999Riemann

See Also

wrap.stiefel

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
#-------------------------------------------------------------------
#   Compare Rayleigh's original and modified versions of the test
# 
# Test 1. sample uniformly from St(2,4)
# Test 2. use perturbed principal components from 'iris' data in R^4
#         which is concentrated around a point to reject H0.
#-------------------------------------------------------------------
## DATA GENERATION
#  1. uniform data
myobj1 = stiefel.runif(n=100, k=2, p=4)

#  2. perturbed principal components
data(iris)
irdat = list()
for (n in 1:100){
   tmpdata    = iris[1:50,1:4] + matrix(rnorm(50*4,sd=0.5),ncol=4)
   irdat[[n]] = eigen(cov(tmpdata))$vectors[,1:2]
}
myobj2 = wrap.stiefel(irdat)

## TEST
#  1. uniform data
stiefel.utest(myobj1, method="Rayleigh")
stiefel.utest(myobj1, method="RayleighM")

#  2. concentrated data
stiefel.utest(myobj2, method="rayleIgh")   # method names are 
stiefel.utest(myobj2, method="raYleiGhM")  # CASE - INSENSITIVE !

Riemann documentation built on June 20, 2021, 5:07 p.m.