View source: R/wrap06rotation.R
wrap.rotation | R Documentation |
Rotation group, also known as special orthogonal group, is a Riemannian manifold
SO(p) = \lbrace Q \in \mathbf{R}^{p\times p}~\vert~ Q^\top Q = I, \textrm{det}(Q)=1 \rbrace
where the name originates from an observation that when p=2,3 these matrices are rotation of shapes/configurations.
wrap.rotation(input)
input |
data matrices to be wrapped as
|
a named riemdata
S3 object containing
a list of (p\times p) rotation matrices.
size of each rotation matrix.
name of the manifold of interests, "rotation"
#------------------------------------------------------------------- # Checker for Two Types of Inputs #------------------------------------------------------------------- ## DATA GENERATION d1 = array(0,c(3,3,5)) d2 = list() for (i in 1:5){ single = qr.Q(qr(matrix(rnorm(9),nrow=3))) d1[,,i] = single d2[[i]] = single } ## RUN test1 = wrap.rotation(d1) test2 = wrap.rotation(d2)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.